CuMg0,5 EN: CW128C UNS: C18665 |
STOL®78
CuMg0,5
CuMg0,5 is a high magnesium (Mg) alloyed material with excellent formability at medium strength and good conductivity. Within the CuMg0,5 family, has the highest magnesium content. With this alloy, very high strengths can be achieved, while the electrical conductivity can be maintained at a very good level of approximately 60 % IACS. Therefore CuMg0,5 is especially suitable for lines with long span length and /or high pretension, like suspended cables, connector pins, telecommunications cable, contact wire and catenary cables for high-speed trains. This alloy family is used as a substitution for copper-cadmium which is already prohibited in many countries due to its toxic properties.
Basic properties
|
|||||
Density [g/cm3] | Specific heat capacity [J/(kg*K)] | Temperature coefficient of electrical resistance (0...100°C) [10-3/K] | Electrical conductivity [T=20°C, (% IACS)] | Thermal conductivity [W/(m*K)] | Thermal expansion coefficient 20...300°C [10-6/K] |
8,7-8,9 | 320 | 2,5-2,71 | 41-68 Comments: from drawn temper up to annealed temper | 270 | 17,3 |
Physical and mechanical properties of copper-magnesium alloys
Material |
Density, g/cm3 |
Tensile strength, MPa |
Elongation soft A100, % |
Electrical conductivity | |||
---|---|---|---|---|---|---|---|
Designation |
Alloy |
Material state |
Value |
MS/m |
% IACS | ||
SD04/SD05 |
CuMg0,5 |
8,9 |
soft |
230-300 |
>30 |
37,1 |
64 |
hard |
360-460 |
||||||
springhard |
460-560 |
||||||
Superspring hard |
560-800 |
Typical applications are automotive, electrical and electronic connectors, relays, current carrying spring contact, junction, boxes switches, relays, contacts, connectors, terminals components for the electrical industry, connecting wire, (car) wiring harnesses, stamped parts, semiconductor components, conductive wire, pins, telecommunications cable, catenary cables, contact wire for high-speed trains. Literature:
Technical data of CuMg0,5 (VALCOND)
|
80 |
100 |
107 |
120 |
150 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VALCOND |
standard |
VALCOND |
standard |
VALCOND |
standard |
VALCOND |
standard |
VALCOND |
standard | ||
Min. tensile strength 3) [MPa] |
520 |
520 |
510 |
510 |
500 |
500 |
490 |
490 |
470 |
470 |
|
Min. breaking load 1) [kN] |
40,8 |
40,4 |
50 |
49,5 |
52,4 |
46,3 |
57,6 |
57 |
69,1 |
68,4 |
|
Percentage elongation after fracture A200 [%] |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
3÷10 |
|
Modulus of elasticity [GPa] |
120 |
120 |
120 |
120 |
120 |
120 |
120 |
120 |
120 |
120 |
|
Yield strength [MPa] |
>430 |
>430 |
>430 |
>430 |
>430 |
>430 |
>430 |
>430 |
>430 |
>430 |
|
Half-Hard point [°C] |
>375 |
>385 |
>375 |
>385 |
>375 |
>385 |
>375 |
>385 |
>375 |
>385 |
|
Electrical conductivity at 20°C [MS/m] |
≥40,6 |
≥36,0 |
≥40,6 |
≥36,0 |
≥40,6 |
≥36,0 |
≥40,6 |
≥36,0 |
≥40,6 |
≥36,0 |
|
Electrical conductivity [%IACS] |
≥70 |
≥62 |
≥70 |
≥62 |
≥70 |
≥62 |
≥70 |
≥62 |
≥70 |
≥62 |
|
Specific electrical resistance at 20°C [10-8 Ωm] |
≤2,463 |
≤2,770 |
≤2,463 |
≤2,770 |
≤2,463 |
≤2,770 |
≤2,463 |
≤2,770 |
≤2,463 |
≤2,770 |
|
Electrical resistance 1) [Ω/km] |
≤0,314 |
≤0,385 |
≤0,251 |
≤0,286 |
≤0,235 |
≤0,268 |
≤0,209 |
≤0,239 |
≤0,168 |
≤0,191 |
|
Creepage elongation 2) [‰] |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
<0,1 |
|
Temperature coefficient of electrical resistance 5) [10-3/K] |
2,7 |
1,85 |
2,7 |
1,85 |
2,7 |
1,85 |
2,7 |
1,85 |
2,7 |
1,85 |
|
Linear coefficient of thermal expansion [10-5/K] |
1,7 |
1,7 |
1,7 |
1,7 |
1,7 |
1,7 |
1,7 |
1,7 |
1,7 |
1,7 |
|
Specific mass 4) [103 kg/m3] |
8,89 |
8,89 |
8,89 |
8,89 |
8,89 |
8,89 |
8,89 |
8,89 |
8,89 |
8,89 |
|
1) Calculation based on the minimum cross section of 98% (EN 50149: 97%) |
Formats |
Dimension | ||
---|---|---|---|
Coil |
Strip thickness (other thicknesses on request) Strip width Outside diameter |
≥ 0.1 .. 6.00 ≥ 3 .. 690 ≤ 1.400 |
mm |
Traverse wound strip |
Thickness Width |
≥ 0.2 .. ≤ 1.50 ≥ 8 .. ≤ 60.0 |
mn |
Multicoil |
Thickness Width Inner diameter 300 mm for thickness Inner diameter 400 mm for thickness |
0.18 .. 0.80 15 .. 50 0.15 .. 0.80 0.41 .. 0.80 |
mm |
Sheet ≤ 6.35 mm |
Thickness Width Length |
0.3 .. 6.35 50 . 690 200 .. 6.500 |
mm |
Sheet > 6.35 mm |
Thickness Width Length |
6.35 .. 9.50 50 .. 690 200 .. 7.500 |
mm mm m |
Plate |
Thickness Width Length |
9.5 .. 150 ≤ 720 ≤ 15.000 |
mm |
Disc |
Thickness Diameter |
0.3 .. 150 20 .. 690 |
mm |
Literature:
Standards for copper and copper alloys
EN 1652 |
Plate, sheet, strip and circles for general purposes |
---|---|
EN 1654 |
Strip for springs and connectors |
EN 1758 |
Strip for lead frames |
EN 13148 |
Hot-dip tinned strip |
EN 13599 |
Copper plate, sheet and strip for electrical purposes |
EN 14436 |
Electrolytically tinned strip |
Properties of square wire made of different copper alloys, dimension 0.63 x 0.63 mm.
Mechanical and electrical properties of different copper alloys
Electrical conductivity-tensile strength chart. Application of copper based alloys as trolley wire
Material properties of CuMg0,5 alloy
E-Module, GPa |
120 |
---|---|
Specific conductivity at 20°C, MS/m |
≥36,0 |
Electric conductivity, %IACS |
≥62 |
Linear expansion coefficient, 10-5/K |
1,7 |
Density, 103 kg/m3 |
8,89 |
Mechanical and electrical properties of trolley wires made from CuMg0,5 alloy
Cross-section, mm2 |
80 |
100 |
107 |
120 |
150 |
---|---|---|---|---|---|
Min. tensile strength, MPa 2) |
520 |
510 |
500 |
490 |
470 |
Min. breaking load, kN 1) |
40,4 |
49,5 |
51,9 |
57,0 |
68,4 |
Elongation at break A200, % |
3-10 |
3-10 |
3-10 |
3-10 |
3-10 |
Yield strength, MPa |
>430 |
>430 |
>430 |
>430 |
>430 |
Electrical resistance, Ω/km |
≤0,385 |
≤0,286 |
≤0,268 |
≤0,239 |
≤0,191 |
1) at min. cross-section |
Stranded conductors BzII according to DIN 48201
Nominal section, mm2 |
Real cross-section, mm2 |
Number of wires |
Wire diameter, mm |
Strand diameter, mm |
Weight, kg/km |
Calc. break up load, kN |
Permanent cross current capacity, A |
---|---|---|---|---|---|---|---|
10 |
10,02 |
7 |
1,35 |
4,1 |
90 |
5,88 |
75 |
16 |
15,89 |
7 |
1,70 |
5,1 |
143 |
9,33 |
100 |
25 |
24,25 |
7 |
2,10 |
6,3 |
218 |
14,24 |
130 |
35 |
34,36 |
7 |
2,50 |
7,5 |
310 |
20,17 |
160 |
50 |
49,48 |
7 |
3,00 |
9,0 |
446 |
28,58 |
200 |
50 |
48,35 |
19 |
1,80 |
9,0 |
437 |
28,39 |
200 |
70 |
65,81 |
19 |
2,10 |
10,5 |
596 |
38,64 |
245 |
95 |
93,27 |
19 |
2,50 |
12,5 |
845 |
54,76 |
305 |
120 |
116,99 |
19 |
2,80 |
14,0 |
1060 |
67,57 |
350 |
150 |
147,11 |
37 |
2,25 |
15,8 |
1337 |
86,37 |
410 |
185 |
181,62 |
37 |
2,50 |
17,5 |
1649 |
106,63 |
465 |
240 |
242,54 |
61 |
2,25 |
20,3 |
2209 |
142,40 |
560 |
300 |
299,43 |
61 |
2,50 |
22,5 |
2725 |
175,80 |
635 |
400 |
400,14 |
61 |
2,89 |
26,0 |
3640 |
231,12 |
765 |
500 |
499,83 |
61 |
3,23 |
29,1 |
4545 |
288,70 |
880 |
Flexible stranded conductors BzII according to DIN 43138
Nominal cross-section, mm2 |
Real cross-section, mm2 |
Number of wires |
Wire diameter, mm |
Strand diameter, mm |
Weight, kg/km |
Tensile strength, MPa |
---|---|---|---|---|---|---|
10 |
9,6 |
49 |
0,50 |
4,5 |
89 |
≥589 |
16 |
16,3 |
49 |
0,65 |
5,9 |
152 |
≥589 |
16 |
16,3 |
84 |
0,50 |
6,2 |
152 |
≥589 |
25 |
26,1 |
133 |
0,50 |
7,5 |
246 |
≥589 |
35 |
37,6 |
133 |
0,60 |
9,0 |
353 |
≥589 |
50 |
51,2 |
133 |
0,70 |
10,5 |
482 |
≥589 |
Chemical composition
|
Value | Comments | |
Cu [ wt.% ] | 99,19-99,5 | Calculated | |
Mg [ wt.% ] | 0,4-0,7 | ||
P [ wt.% ] | 0,01 | max | |
Others [ wt.% ] | 0,1 |
Chemical composition, weight percentage, (c) | Literature | |||
---|---|---|---|---|
Mg | P (max.) | Other | Cu | |
0,4÷0,9 | ≤0,01 | - | ≥99,0 | |
0,4 | - | - | rest |
Mechanical properties
|
||||||
UTS [MPa] | YS [MPa] | Elongation [%] | Hardness | Young’s modulus [GPa] | Kirchhoff’s modulus [GPa] | Poisson ratio |
380-1000 Comments: hard temper 270-390 Comments: annealed temper | 300-550 | 3-14 Comments: minimum (A50) | 115-195 Comments: [HV] | 130 Comments: cold formed | No data | No data |
Mechanical properties of CuMg0,4
Nominal diameter, mm |
Temper |
Tensile strength, MPa |
---|---|---|
1,2 – 5,0 |
soft |
Max. 390 |
1,0 |
hard |
760 |
1,3 |
hard |
740 |
1,5 |
hard |
720 |
2,0 |
hard |
710 |
2,5 |
hard |
640 |
3,0 |
hard |
610 |
3,5 |
hard |
600 |
4,0 |
hard |
580 |
5,0 |
hard |
560 |
Mechanical properties of CuMg0,4 (references values, not standardized)
Highest tensile strength for diameter (mm), MPa | |
---|---|
Tensile strength, soft annealed |
390 |
5,0 |
560 |
3,5 |
600 |
3,0 |
610 |
2,5 |
640 |
2,0 |
710 |
1,5 |
720 |
1,3 |
740 |
Mechanical properties of CuMg0,4
Tensile strength (soft annealed), MPa |
270 - 340 |
---|---|
Tensile strength (hard), MPa |
510 – 610 |
Tensile strength (spring hard), MPa |
610 – 710 |
Tensile strength (super spring hard), MPa |
710 - 1000 |
Ultimate tensile strength, yield stress and elongation as a function of deformation of CuMg0,5 alloy
Electrical properties aas a function of deformation of CuMg0,5 alloy
Mechanical properties (EN 1652)
Temper |
Tensile strength, MPa |
Yield strength min., MPa |
Elongation A50, min, % |
Elongation |
Hardness HV |
---|---|---|---|---|---|
R380 |
380-460 |
330 |
14 |
17 |
115-145 |
E460 |
460-520 |
410 |
10 |
12 |
140-165 |
R520 |
520-570 |
460 |
8 |
10 |
160-180 |
R570 |
570-620 |
500 |
6 |
8 |
175-195 |
R620≤0,5mm |
>620 |
550 |
3 |
8 |
>190 |
Electrical conductivity as a function of CuMg0,5 alloy temper
Change of Conductivity and Strength with the Mg-Content for CuMg alloys
Tensile strength and electrical conductivity of selected copper alloys
Comparison of the electrical and mechanical characteristics and heat resistance of trolley wires made from different copper alloys
Material |
Electrical conductivity, %IACS |
Tensile strength, MPa |
Elastic limit, MPa |
Recrystallization temperature, °C |
---|---|---|---|---|
CuETP |
99,5 |
370 |
356 |
220 |
CuAg0,1 |
98,7 |
370 |
360 |
340 |
EVELEC |
87,2 |
405 |
374 |
380 |
CuMg0,2 |
77,8 |
440 |
432 |
410 |
CuMg0,5 |
60,5 |
500 |
440 |
420 |
Comparison of the electrical and mechanical characteristics of some of copper alloys designed for trolley wires
Tensile strength comparison of trolley wires made from copper and copper alloys
Maximum resistance comparison of trolley wires made from copper and copper alloys
Maximum resistivity comparison of trolley wires made from copper and copper alloys
Ultimate tensile strength as a function of heat treatment temperature for different strain of CuMg0,5 alloy
Vickers hardness as a function of time heat treatment (300°C) of CuMg0,5 alloy (In R440 temper)
Strength properties of different Cu alloys (Cu-Mg alloy included) designed for trolley wires as a function of heating temperature for 1h heating time
Ultimate tensile strength as a function of temperature and time of heat treatment of CuMg0,5 alloy
Trolley wire mechanical properties
Material, cross-section |
Tensile strength half-hard, MPa |
Tensile strength hard, MPa |
Temperature half-hard, °C |
---|---|---|---|
CuMg0,5 120mm2 |
394 |
516 |
375 |
Mechanical properties of CuMg0,4 alloy
Tensile strength, MPa |
Soft annealing temperature, °C |
Stress relieving temperature |
---|---|---|
max. 390 (soft) ÷ 750 (hard) |
420 ÷ 520 |
180 ÷ 220 °C |
CuMg0,5 has a good hydrogen-resistance
CuMg has a good resistance in in natural and industrial atmosphere (maritime air too). Industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapour (steam), non-oxidizing acids (without oxygen in solution) and salts, neutral saline solutions. Not resistant to oxidizing acids, solutions containing cyanides, ammonia or halogens, hydrous ammonia and halogenated gases, hydrogen sulphide, seawater. Literature
Type of corrosion | Suitability | Literature |
---|---|---|
Atmospheric | CuMg0,5 has a good resistance in in natural and industrial atmosphere | |
Marine environment | CuMg0,5 has a good resistance in maritime air. | |
Stress crack | Practically resistant against stress corrosion cracking | |
Hydrogen embrittlement | CuMg0,5 has a good hydrogen-resistant | |
Electrolytic | No data | - |
Other - oxidising acids | Not resistant |
Stress relaxation as a function of initial stress, temperature and time for wires made from CuMg0,5 alloy.
Test parameters: wire diameter 3,5mm (c=80%), initial stress 20-50% of UTS
Remaining stress as a function of initial stress value, rolling direction, temperature and test time for CuMg0,5 alloy.
Typical test sample thickness is 0.3 – 0.6 mm
Residual stress as a function of time test for wire made of CuMg0,5 alloy.
Test parameters: wire diameter 3,5mm (c=80%), initial stress 30% of UTS, t=20°C
Progress of additional strain as a function of test time for wires made from Cu, CuAg and CuMg alloys. Test Parameters: RT (18°C), Load: F=11,25 kN
Weight loss as function of material conditions (after drawing and after heat treatment) and time of friction for CuMg0,5 alloy.
Test parameters: ℇc=80%, antispecimen: metal-carbon composite, load force F=30N, friction velocity V=11 m/s
Bending test according to EN ISO 7438 is done with 10 mm wide samples. Smaller samples in general – as well as lower thickness – allow a lower bending radius without cracks.
Minimum Bending Radius Calculation
To find out the minimum possible bending radius take the R/T value from the list.
Example: R/T = 0.5 and thickness 0.3 mm
Minimum radius = (R/T) x thickness = 0.5 x 0.3 mm = 0.15 mm
Bending properties of CuMg0,4 alloy as a function of material conditions and rolling direction (measured at sample width 10mm according to EN 1654, possible bending radius=(R/T) x thickness)
Bending properties of CuMg0,4 alloy
Temper |
Thickness range, mm |
Bending 90° |
Bending 180° | ||
---|---|---|---|---|---|
Transvers, R/T |
Parallel, R/T |
Transvers, R/T |
Parallel, R/T | ||
R380 |
≤ 0,5 |
0 |
0 |
0 |
0,5 |
R460 |
≤ 0,5 |
0,5 |
1 |
1,5 |
3 |
R520 |
≤ 0,5 |
1 |
2,5 |
2 |
5 |
R570 |
≤ 0,5 |
2,5 |
5 |
3,5 |
8 |
R620 |
≤ 0,5 |
3 |
6 |
5 |
10 |
Fabrication properties
|
Value | Comments | |
Soldering | Excellent | ||
Brazing | Excellent | ||
Hot dip tinning | Excellent | ||
Laser welding | Fair | ||
Gas Shielded Arc Welding | Excellent | ||
Capacity for Being Cold Worked | Excellent | ||
Machinability Rating | 20 |
Technological properties
|
||||||||
Melting temperature [°C] | Casting temperature [°C] | Castability | Annealling temperature [°C] | Homogenization temperature [°C] | Quenching temperature [°C] | Ageing temperature [°C] | Stress relievieng temperature [°C] | Hot working temperature [°C] |
No data | No data | No data | 250-650 Comments: time of annealling: 1-3h | No data | No data | No data | 150-200 Comments: time of stress relievieng: 1-3h | No data |