Login

CuMg0,5
EN: CW128C
UNS: C18665
MANUFACTURERS LIST

CuMg0,5 is a high magnesium (Mg) alloyed material with excellent formability at medium strength and good conductivity. Within the CuMg0,5 family, has the highest magnesium content. With this alloy, very high strengths can be achieved, while the electrical conductivity can be maintained at a very good level of approximately 60 % IACS. Therefore CuMg0,5 is especially suitable for lines with long span length and /or high pretension, like suspended cables, connector pins, telecommunications cable, contact wire and catenary cables for high-speed trains. This alloy family is used as a substitution for copper-cadmium which is already prohibited in many countries due to its toxic properties.

Basic properties

Basic properties
Density
[g/cm3]
Specific heat capacity
[J/(kg*K)]
Temperature coefficient of electrical resistance (0...100°C)
[10-3/K]
Electrical conductivity
[T=20°C, (% IACS)]
Thermal conductivity
[W/(m*K)]
Thermal expansion coefficient 20...300°C
[10-6/K]
8,7-8,9
320
2,5-2,71
41-68
Comments:
from drawn temper up to annealed temper
270
17,3

Physical and mechanical properties of copper-magnesium alloys

Material

Density, g/cm3

Tensile strength, MPa

Elongation soft A100, %

Electrical conductivity

Designation

Alloy

Material state

Value

MS/m

% IACS

SD04/SD05

CuMg0,5

8,9

soft

230-300

>30

37,1

64

hard

360-460

springhard

460-560

Superspring hard

560-800

Applications

Typical applications are automotive, electrical and electronic connectors, relays, current carrying spring contact, junction, boxes switches, relays, contacts, connectors, terminals components for the electrical industry, connecting wire, (car) wiring harnesses, stamped parts, semiconductor components, conductive wire, pins, telecommunications cable, catenary cables, contact wire for high-speed trains. Literature:

Technical data of CuMg0,5 (VALCOND)

 

80

100

107

120

150

VALCOND

standard

VALCOND

standard

VALCOND

standard

VALCOND

standard

VALCOND

standard

Min. tensile strength 3)

[MPa]

520

520

510

510

500

500

490

490

470

470

Min. breaking load 1)

[kN]

40,8

40,4

50

49,5

52,4

46,3

57,6

57

69,1

68,4

Percentage elongation after fracture A200

[%]

3÷10

3÷10

3÷10

3÷10

3÷10

3÷10

3÷10

3÷10

3÷10

3÷10

Modulus of elasticity

[GPa]

120

120

120

120

120

120

120

120

120

120

Yield strength

[MPa]

>430

>430

>430

>430

>430

>430

>430

>430

>430

>430

Half-Hard point

[°C]

>375

>385

>375

>385

>375

>385

>375

>385

>375

>385

Electrical conductivity at 20°C

[MS/m]

≥40,6

≥36,0

≥40,6

≥36,0

≥40,6

≥36,0

≥40,6

≥36,0

≥40,6

≥36,0

Electrical conductivity

[%IACS]

≥70

≥62

≥70

≥62

≥70

≥62

≥70

≥62

≥70

≥62

Specific electrical resistance at 20°C

[10-8 Ωm]

≤2,463

≤2,770

≤2,463

≤2,770

≤2,463

≤2,770

≤2,463

≤2,770

≤2,463

≤2,770

Electrical resistance 1)

[Ω/km]

≤0,314

≤0,385

≤0,251

≤0,286

≤0,235

≤0,268

≤0,209

≤0,239

≤0,168

≤0,191

Creepage elongation 2)

[‰]

<0,1

<0,1

<0,1

<0,1

<0,1

<0,1

<0,1

<0,1

<0,1

<0,1

Temperature coefficient of electrical resistance 5)

[10-3/K]

2,7

1,85

2,7

1,85

2,7

1,85

2,7

1,85

2,7

1,85

Linear coefficient of thermal expansion

[10-5/K]

1,7

1,7

1,7

1,7

1,7

1,7

1,7

1,7

1,7

1,7

Specific mass 4)

[103 kg/m3]

8,89

8,89

8,89

8,89

8,89

8,89

8,89

8,89

8,89

8,89

1) Calculation based on the minimum cross section of 98% (EN 50149: 97%)
2) Temperature 150°C; applied load 100N pro mm2; time 1000h
3) Different tensile strength on request 
4) According to EN 50149
5) Standard according to the nominal value of EN 50149, Valcond based on nkt-investigation

Formats

Dimension

Coil

Strip thickness (other thicknesses on request)

Strip width

Outside diameter

≥ 0.1 .. 6.00

≥ 3 .. 690

≤ 1.400

mm

Traverse wound strip

Thickness

Width

≥ 0.2 .. ≤ 1.50

≥ 8 .. ≤ 60.0

mn

Multicoil

Thickness

Width

Inner diameter 300 mm for thickness

Inner diameter 400 mm for thickness

0.18 .. 0.80

15 .. 50

0.15 .. 0.80

0.41 .. 0.80

mm

Sheet

≤ 6.35 mm

Thickness

Width

Length

0.3 .. 6.35

50 . 690

200 .. 6.500

mm

Sheet

> 6.35 mm

Thickness

Width

Length

6.35 .. 9.50

50 .. 690

200 .. 7.500

mm

mm

m

Plate

Thickness

Width

Length

9.5 .. 150

≤ 720

≤ 15.000

mm

Disc

Thickness

Diameter

0.3 .. 150

20 .. 690

mm

Literature:

Standards for copper and copper alloys

EN 1652

Plate, sheet, strip and circles for general purposes

EN 1654

Strip for springs and connectors

EN 1758

Strip for lead frames

EN 13148

Hot-dip tinned strip

EN 13599

Copper plate, sheet and strip for electrical purposes

EN 14436

Electrolytically tinned strip

Properties of square wire made of different copper alloys, dimension 0.63 x 0.63 mm.

 Mechanical and electrical properties of different copper alloys

Electrical conductivity-tensile strength chart. Application of copper based alloys as trolley wire

Material properties of CuMg0,5 alloy

E-Module, GPa

120

Specific conductivity at 20°C, MS/m

≥36,0

Electric conductivity, %IACS

≥62

Linear expansion coefficient, 10-5/K

1,7

Density, 103 kg/m3

8,89

Mechanical and electrical properties of trolley wires made from CuMg0,5 alloy

Cross-section, mm2

80

100

107

120

150

Min. tensile strength, MPa 2)

520

510

500

490

470

Min. breaking load, kN 1)

40,4

49,5

51,9

57,0

68,4

Elongation at break A200, %

3-10

3-10

3-10

3-10

3-10

Yield strength, MPa

>430

>430

>430

>430

>430

Electrical resistance, Ω/km

≤0,385

≤0,286

≤0,268

≤0,239

≤0,191

1) at min. cross-section
2) other properties upon request

Stranded conductors BzII according to DIN 48201

Nominal section, mm2

Real cross-section, mm2

Number of wires

Wire diameter, mm

Strand diameter, mm

Weight, kg/km

Calc. break up load, kN

Permanent cross current capacity, A

10

10,02

7

1,35

4,1

90

5,88

75

16

15,89

7

1,70

5,1

143

9,33

100

25

24,25

7

2,10

6,3

218

14,24

130

35

34,36

7

2,50

7,5

310

20,17

160

50

49,48

7

3,00

9,0

446

28,58

200

50

48,35

19

1,80

9,0

437

28,39

200

70

65,81

19

2,10

10,5

596

38,64

245

95

93,27

19

2,50

12,5

845

54,76

305

120

116,99

19

2,80

14,0

1060

67,57

350

150

147,11

37

2,25

15,8

1337

86,37

410

185

181,62

37

2,50

17,5

1649

106,63

465

240

242,54

61

2,25

20,3

2209

142,40

560

300

299,43

61

2,50

22,5

2725

175,80

635

400

400,14

61

2,89

26,0

3640

231,12

765

500

499,83

61

3,23

29,1

4545

288,70

880

Flexible stranded conductors BzII according to DIN 43138

Nominal cross-section, mm2

Real cross-section, mm2

Number of wires

Wire diameter, mm

Strand diameter, mm

Weight, kg/km

Tensile strength, MPa

10

9,6

49

0,50

4,5

89

≥589

16

16,3

49

0,65

5,9

152

≥589

16

16,3

84

0,50

6,2

152

≥589

25

26,1

133

0,50

7,5

246

≥589

35

37,6

133

0,60

9,0

353

≥589

50

51,2

133

0,70

10,5

482

≥589

Chemical composition

Chemical composition
Value Comments
Cu [ wt.% ]99,19-99,5
Calculated
Mg [ wt.% ]0,4-0,7

P [ wt.% ]0,01
max
Others [ wt.% ]0,1

Chemical composition, weight percentage, (c)

Literature

Mg

P (max.)

Other

Cu

0,4÷0,9

≤0,01

-

≥99,0

0,4

-

-

rest

Mechanical properties

Mechanical properties
UTS
[MPa]
YS
[MPa]
Elongation
[%]
HardnessYoung’s modulus
[GPa]
Kirchhoff’s modulus
[GPa]
Poisson ratio
380-1000
Comments:
hard temper

270-390
Comments:
annealed temper
300-550
3-14
Comments:
minimum (A50)
115-195
Comments:
[HV]
130
Comments:
cold formed
No data No data

Mechanical properties of CuMg0,4

Nominal diameter, mm

Temper

Tensile strength, MPa

1,2 – 5,0

soft

Max. 390

1,0

hard

760

1,3

hard

740

1,5

hard

720

2,0

hard

710

2,5

hard

640

3,0

hard

610

3,5

hard

600

4,0

hard

580

5,0

hard

560

Mechanical properties of CuMg0,4 (references values, not standardized)

Highest tensile strength for diameter (mm), MPa

Tensile strength, soft annealed

390

5,0

560

3,5

600

3,0

610

2,5

640

2,0

710

1,5

720

1,3

740

Mechanical properties of CuMg0,4

Tensile strength (soft annealed), MPa

270 - 340

Tensile strength (hard), MPa

510 – 610

Tensile strength (spring hard), MPa

610 – 710

Tensile strength (super spring hard), MPa

710 - 1000

Ultimate tensile strength, yield stress and elongation as a function of deformation of CuMg0,5 alloy

Electrical properties aas a function of deformation of CuMg0,5 alloy

Mechanical properties (EN 1652)

Temper

Tensile strength, MPa

Yield strength min., MPa

Elongation A50, min, %

Elongation
(thermal stress relieved)
A50, min, %

Hardness HV

R380

380-460

330

14

17

115-145

E460

460-520

410

10

12

140-165

R520

520-570

460

8

10

160-180

R570

570-620

500

6

8

175-195

R620≤0,5mm

>620

550

3

8

>190

Electrical conductivity as a function of CuMg0,5 alloy temper

Change of Conductivity and Strength with the Mg-Content for CuMg alloys

Tensile strength and electrical conductivity of selected copper alloys

Comparison of the electrical and mechanical characteristics and heat resistance of trolley wires made from different copper alloys

Material

Electrical conductivity, %IACS

Tensile strength, MPa

Elastic limit, MPa

Recrystallization temperature, °C

CuETP

99,5

370

356

220

CuAg0,1

98,7

370

360

340

EVELEC

87,2

405

374

380

CuMg0,2

77,8

440

432

410

CuMg0,5

60,5

500

440

420

Comparison of the electrical and mechanical characteristics of some of copper alloys designed for trolley wires

Tensile strength comparison of trolley wires made from copper and copper alloys

Maximum resistance comparison of trolley wires made from copper and copper alloys

Maximum resistivity comparison of trolley wires made from copper and copper alloys

Exploitation properties

Ultimate tensile strength as a function of heat treatment temperature for different strain of CuMg0,5 alloy

Vickers hardness as a function of time heat treatment (300°C) of CuMg0,5 alloy (In R440 temper)

Strength properties of different Cu alloys (Cu-Mg alloy included) designed for trolley wires as a function of heating temperature for 1h heating time

Ultimate tensile strength as a function of temperature and time of heat treatment of CuMg0,5 alloy

Trolley wire mechanical properties

Material, cross-section

Tensile strength half-hard, MPa

Tensile strength hard, MPa

Temperature half-hard, °C

CuMg0,5 120mm2

394

516

375

Mechanical properties of CuMg0,4 alloy

Tensile strength, MPa

Soft annealing temperature, °C

Stress relieving temperature

max. 390 (soft) ÷ 750 (hard)

420 ÷ 520

180 ÷ 220 °C

CuMg0,5 has a good hydrogen-resistance

CuMg has a good resistance in in natural and industrial atmosphere (maritime air too). Industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapour (steam), non-oxidizing acids (without oxygen in solution) and salts, neutral saline solutions. Not resistant to oxidizing acids, solutions containing cyanides, ammonia or halogens, hydrous ammonia and halogenated gases, hydrogen sulphide, seawater. Literature

 

Type of corrosion

Suitability

Literature

Atmospheric

CuMg0,5 has a good resistance in in natural and industrial atmosphere

Marine environment

CuMg0,5 has a good resistance in maritime air.

Stress crack

Practically resistant against stress corrosion cracking

Hydrogen embrittlement

CuMg0,5 has a good hydrogen-resistant

Electrolytic

No data

 -

Other - oxidising acids

Not resistant

Stress relaxation as a function of initial stress, temperature and time for wires made from CuMg0,5 alloy.
Test parameters: wire diameter 3,5mm (\varepsilon\!c=80%), initial stress 20-50% of UTS

Remaining stress as a function of initial stress value, rolling direction, temperature and test time for CuMg0,5 alloy.
Typical test sample thickness is 0.3 – 0.6 mm

Residual stress as a function of time test for wire made of CuMg0,5 alloy.
Test parameters: wire diameter 3,5mm (\varepsilon\!c=80%), initial stress 30% of UTS, t=20°C

Progress of additional strain as a function of test time for wires made from Cu, CuAg and CuMg alloys. Test Parameters: RT (18°C), Load: F=11,25 kN

Weight loss as function of material conditions (after drawing and after heat treatment) and time of friction for CuMg0,5 alloy.
Test parameters: ℇc=80%, antispecimen: metal-carbon composite, load force F=30N, friction velocity V=11 m/s

Bending test according to EN ISO 7438 is done with 10 mm wide samples. Smaller samples in general – as well as lower thickness – allow a lower bending radius without cracks.

Minimum Bending Radius Calculation

To find out the minimum possible bending radius take the R/T value from the list.

Example: R/T = 0.5 and thickness 0.3 mm

Minimum radius = (R/T) x thickness = 0.5 x 0.3 mm = 0.15 mm

            

Bending properties of CuMg0,4 alloy as a function of material conditions and rolling direction (measured at sample width 10mm according to EN 1654, possible bending radius=(R/T) x thickness)

Bending properties of CuMg0,4 alloy

Temper

Thickness range, mm

Bending 90°

Bending 180°

Transvers, R/T

Parallel, R/T

Transvers, R/T

Parallel, R/T

R380

≤ 0,5

0

0

0

0,5

R460

≤ 0,5

0,5

1

1,5

3

R520

≤ 0,5

1

2,5

2

5

R570

≤ 0,5

2,5

5

3,5

8

R620

≤ 0,5

3

6

5

10

NO DATA AVAILABLE
Fabrication properties

Fabrication properties
Value Comments
SolderingExcellent

BrazingExcellent

Hot dip tinningExcellent

Laser weldingFair

Gas Shielded Arc WeldingExcellent

Capacity for Being Cold WorkedExcellent

Machinability Rating20

Technological properties

Technological properties
Melting temperature
[°C]
Casting temperature
[°C]
CastabilityAnnealling temperature
[°C]
Homogenization temperature
[°C]
Quenching temperature
[°C]
Ageing temperature
[°C]
Stress relievieng temperature
[°C]
Hot working temperature
[°C]
No data No data No data 250-650
Comments:
time of annealling: 1-3h
No data No data No data 150-200
Comments:
time of stress relievieng: 1-3h
No data
Copyrights © LTPMN 2012. All rights reserved