Login

CuOFE
EN: CR009A, CW009A
UNS: C10100
MANUFACTURERS LIST
Aurubis
Cu-OF, Cu-OFE, OFE-OK®
Cupori Oy
Cupori 411 Cu-OF, Cupori 421 Cu-OF, Cupori 431 LWC Cu-OF, Cupori 461 Solar Cu-OF, Cupori 471 Oval Cu-OF, Cupori 481 Cu-OF
Freeport McMoRan Copper & Gold
C101 - Oxygen Free Certified (Electronic & Cryogenic Grades), C102 - Oxygen Free Copper
La Farga
Cu-OF1, Cu-OF, Cu-OFE
Luvata
CuOF, CuOFE, OF-OK™
Montanwerke Brixlegg AG
MB-OF 100, MB-OF 101 CERTYFIED, MB-OFN
Nexans
OF copper oxygen-free Cu-c1
Pan Pacific Copper
Oxygen Free Copper (OFC)
Tenke Fungurume
C101, C102

CuOFE (CuOF1 - EN: CR007A, CW007A, UNS: C10200 and CuOF - EN: CR008A, CW008A, UNS: C10200) is a high purity, oxygen free, non-phosphorus-deoxidized copper that does not contain in vacuum evaporating elements. It has a very high electrical and thermal conductivity, good welding and excellent soldering properties. It has excellent hot and cold forming properties, and a good corrosion resistance, especially in atmosphere due to a good adherence of the oxide layer. CuOF can be heat treated in reducing atmosphere. Characteristics are high ductility, high impact strength, good creep resistance and low relative volatility under high vacuum. The alloy is registered US EPA antimicrobial. The lack of oxygen in oxygen free copper is the main reason for the improvement of its plasticity, electric conductivity, resistance to corrosion and resistance to hydrogen embrittlement relative to ETP copper. Oxygen content below 5 ppm makes it impossible for copper oxides, CuO and Cu2O, which hinder the process of drawing wires with diameters of less than 0.1 mm, to form. Furthermore, the presence of copper oxides leads to a decrease in corrosion resistance and makes heat treatment in a hydrogen atmosphere impossible (hydrogen embrittlement). Copper is cathodic to hydrogen in the electromotive series and therefore is the cathode in galvanic couples with other base metals such as iron, aluminium, magnesium, lead, tin and zinc. C10100 and C10200 have excellent resistance to atmospheric corrosion and to corrosion by most waters, including brackish water and seawater. They have good resistance to nonoxidizing acids but poor resistance to oxidizing acids, moist ammonia, moist halogens, sulfides, and solutions containing ammonium ions. CuOFE is produced by the direct conversion of selected refined cathodes and castings under carefully controlled conditions to prevent contamination of the pure oxygen-free metal during processing. The method of producing OFHC copper ensures extra high grade of metal with a copper content of 99.99%. With so small a content of extraneous elements, the inherent properties of elemental copper are brought forth to a high degree.

Literature:

Basic properties

Basic properties
Density
[g/cm3]
Specific heat capacity
[J/(kg*K)]
Temperature coefficient of electrical resistance (0...100°C)
[10-3/K]
Electrical conductivity
[T=20°C, (% IACS)]
Thermal conductivity
[W/(m*K)]
Thermal expansion coefficient 20...300°C
[10-6/K]
8,890-8,944
385
3,9-4,3
Comments:
Depends on purity.

4,27
Comments:
Resistance alloy (0 to 50°C)
96,6-101
Comments:
min, as spec, ASTM
383-394
17,7

 

Electrical resistivity vs casting speed of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)

Electrical conductivity vs casting speed of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)

Electrical conductivity vs casting speed and macrostructure of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)

The influence of oxygen on the electrical conductivity of copper with purity from 3N (99.90% Cu) to 5N (99.999% Cu)

The influence of impurities on the electrical conductivity of CuOFE

The solubility of sulfur, selenium and tellurium in CuOFE depending on the temperature

Electrical resistivity vs strain of CuOFE wire based on wire rod from continuous casting process - Upcast technology (casting speed 0,5-4.0m/min.) and DCC-AGH method (casting speed 0.006-0.2m/min.)

Electrical resistivity vs casting speed of CuOFE wire based on wire rod from continuous casting process - Upcast and DCC-AGH

Electrical conductivity vs strain of CuOFE wire based on wire rod from continuous casting process - Upcast technology (casting speed 0,5-4.0m/min.) and DCC-AGH method (casting speed 0.006-0.2m/min.)

Electrical conductivity vs casting speed of CuOFE wire based on wire rod from continuous casting process - Upcast and DCC-AGH

Electrical conductivity vs strain of CuOFE wire based on wire rod from continuous casting process - Upcast technology (casting speed 0,5-4.0m/min.) and DCC-AGH method (casting speed 0.006-0.2m/min.)

 

Electrical conductivity vs casting speed of CuOFE wire based on wire rod from continuous casting process - Upcast and DCC-AGH

Applications

The assortment of oxygen free copper products is very broad and is concentrated mainly on highly advanced products. Oxygen free copper of the highest quality is mainly used in electron technology (accelerator elements and electron tubes), vacuum apparatus, cryogenics (elements operating at low temperatures), superconduction, cable technology (connecting elements, microwires, enamelled conductors, transmission conductors, conductors for applications in information technology, audio-video conductors). Interest in the dynamically developing oxygen free copper electro-technical industry, its production technology, as well as its physical and mechanical properties, is a result of the wide applications of this material. One application of oxygen free copper is the production of wires and microwires with diameters of less than 0.1 mm. Such capacity for use of oxygen free copper in the drawing process is related to the limited potential of the traditionally used ETP grade copper for electric applications, characterized by its content of hard copper oxides (Cu2O) with sizes of 5÷10 µm, which, for very small wire diameters, significantly decrease their ductility. It is the chemical purity of copper that is the guarantor and fundamental requirement for obtaining high electric conductivity of the material.

A lack of oxygen in OFE copper lowers the danger of hydrogen embrittlement, guaranteeing failure-free operation of fire-resistant cables during a fire, assuming that the wires are made of oxygen-free copper. Therefore fire-resistant cables made from OFE copper are used in in public utility facilities (hospitals, schools, hotels, airports, elevators, tunnels) where must meet many stringent fire protection requirements. In particular, it concerns the need for safe evacuation in the event of a fire.

Moreover typical uses of oxygen free copper are busbars, waveguides, lead-in wire, anodes, vacuum seals, transistor components, glass-to-metal seals, coaxial cables, klystrons, microwave tubes. Heating in oxidizing atmospheres at high temperatures should be avoided because of the danger of oxidation.

Literature:

Forms Available: Flat products, pipe, rod, shapes, tubing, wire

CuOFE (C10100)

Product

Specification

Literature

Flat products

ASTM B48

ASTM B133

ASTM B152

ASTM B187

ASTM B272

ASTM B432

ASTM F68

Pipe

ASTM B423

ASTM B188

ASTM F68

Rod

ASTM B12

ASTM B49

ASTM B133

ASTM B187

ASTM F68

QQ-C-502

Shapes

ASTM B133

ASTM B187

ASTM B68

Tubing

ASTM B372

ASTM B68

ASTM B75

ASTM B188

ASTM B280

ASTM F68

Wire

ASTM B1

ASTM B2

ASTM B3

ASTM F68

 

CuOF1, CuOF (C10200)

Product

Specification

Literature

Flat products

ASTM B48

ASTM B133

ASTM B152

ASTM B187

ASTM B272

ASTM B370

ASTM B432

QQ-C-576

Pipe

ASTM B423

ASTM B188

Rod

ASTM B12

ASTM B49

ASTM B124

ASTM B133

ASTM B187

QQ-C-502

Shapes

ASTM B124

ASTM B133

ASTM B187

QQ-C-502

Tubing

ASTM B68

ASTM B75

ASTM B88

ASTM B111

ASTM B188

ASTM B280

ASTM B359

ASTM B372

ASTM B395

ASTM B447

WW-T-775

Wire

ASTM B1

ASTM B2

ASTM B3

ASTM B33

ASTM B470

ASTM B116

ASTM B189

ASTM B246

ASTM B286

ASTM B298

ASTM B355

QQ-C-502

QQ-W-343F

MIL-W-3318

Chemical composition

Chemical composition
Value Comments
Ag [ wt.% ]0,0025

As [ wt.% ]0,0005

Bi [ wt.% ]0,0002

Cd [ wt.% ]0,0001

Cu [ wt.% ]99,99

Fe [ wt.% ]0,001

Mn [ wt.% ]0,0005

Ni [ wt.% ]0,001

P [ wt.% ]0,0003

Pb [ wt.% ]0,0005

S [ wt.% ]0,0015

Sb [ wt.% ]0,0004

Se [ wt.% ]0,0002

Sn [ wt.% ]0,0002

Te [ wt.% ]0,0002

Zn [ wt.% ]0,0001

Chemical composition, wt%

Ag

As

Bi

Cd

Co

Cr

Fe

Mn

Ni

P

Pb

S

Sb

Se

Si

Sn

Te

Zn

Others

Cu

max.

0,00

25

 

0,00

05

1)

0,00

02

2)

0,0001-1)

-3)

-1)

0,00

10

3)

0,0005-1)

0,0010-3)

0,0003-1)

0,00

05

0,00

15

0,00

04 1)

0,00

02 2)

-3)

0,0002-3)

0,00

02

0,0001-3)

The oxygen content shall be such that the material conforms to the hydrogen embrittlement requirement

min. 99,99

1) (As + Cd + Cr + Mn + P + Sb) maximum 0,0015%

2)  (Bi + Se + Te) maximum 0,0003%, including (Se + Te) maximum 0,00030%

3)  (Co + Fe + Ni + Si + Sn + Zn) maximum 0,0020%

Literature:

 Chemical composition of CuOF according to EN 1976, EN 1977

Chemical composition, wt%

Other named elements

Cu1)

min.

0.0010 O

99,95

1) Including Ag with maximum 0,015%

Literature:

Chemical composition of CuOFE according to Copper Development Association Inc.

Chemical composition, wt%

As

Sb

P

Te

Others

Cu including Ag

max.

min.

0,0005

0,0004

0,0003

0,0002

The oxygen content shall be such that the material conforms to the hydrogen embrittlement requirement.

The following additional maximum limits apply: Bi 0,0001%; Cd 0,001%; Fe 0,0010%; Pb 0,0005%; Mn 0,00005%; Hg 0,0001%; Ni 0,0010%; oxygen 0,0005%; Se 0,0003%; Ag 0,0025%; S 0,0015%; Sn 0,0002%; Zn 0,0001%.

99,99

Literature:

 

Chemical composition of CuOFE according to EN 13604 (2002)

Chemical composition, wt%

Bi

Fe

Mn

Ni

P

Pb

Sn

Zn

Others

Others

Cu

max.

min.

0,0002

0,0010

0,0005

0,0010

0,0003

0,0005

0,0002

0,0001

%Ag<0,025;

%As<0,0005;

%Cd<0,0001;

%S<0,0015;

%Sb<0,0004;

%Se<0,0002;

%Te<0,0002

The oxygen content shall be such that the material conforms to the hydrogen embrittlement requirement

99,99

Literature:

 

Chemical composition of CuOFE according to ISO 4738 (1982)

Chemical composition, wt%

Bi

Cd

Hg

O

P

Pb

S

Se

Te

Zn

Total Others

Cu

max.

min.

0,0010

0,0001

0,0001

0,0030

0,0003

0,0010

0,0018

0,0010

0,0010

0,0001

As + Sb + Bi + Cd + Se + Te + Sn + Mg

99,99 Excluding Ag

Literature:

 

  

Chemical composition of CuOFE wire rod (diameter 8.00 mm)

Tech-

no-

logy

Chemical composition, wt%

Ag

As

Bi

Cd

Co

Cr

Fe

Mn

Ni

O2

P

Pb

S

Sb

Se

Sn

Te

Zn

Total

Exclu-

ding

O2

Rauto-

mead

0,00

10

0,00

005

0,00

002

0,00

00

01

0,00

00

05

0,00

00

04

0,00

017

0,00

00

03

0,00

016

0,00

04

0,00

001

0,00

009

0,00

022

0,00

007

0,00

001

0,00

003

0,00

001

0,00

016

0,00

20

Upcast

0,00

09

0,00

004

0,00

001

0,00

00

01

0,00

00

04

0,00

00

02

0,00

016

0,00

00

03

0,00

015

0,00

015

0,00

001

0,00

009

0,00

012

0,00

008

0,00

001

0,00

003

0,00

001

0,00

014

0,00

18

DCC-

AGH

0,00

09

0,00

003

0,00

001

0,00

00

01

0,00

00

03

0,00

00

01

0,00

014

0,00

00

02

0,00

011

0,00

007

0,00

02

0,00

006

0,00

01

0,00

004

0,00

0003

0,00

001

0,00

001

0,00

011

0,00

17

Mechanical properties

Mechanical properties
UTS
[MPa]
YS
[MPa]
Elongation
[%]
HardnessYoung’s modulus
[GPa]
Kirchhoff’s modulus
[GPa]
Poisson ratio
140-455
35-365

140-220
Comments:
Hardened
4-55
45-70
Comments:
HBW

40-95
Comments:
HRF

10-80
Comments:
HRB

25-65
Comments:
HR30T

75-90
Comments:
HV (1/2 hard)

90-105
Comments:
HV (full hard)
115

112-131
Comments:
Annealed

131,3
Comments:
Min. 99,99%, Forged and annealed 800°C
44

46,4
Comments:
Annealed

46-48
Comments:
Annealed
0,31-0,35

Mechanical properties of CuOF1, CuOF, CuOFE

Temper

UTS,

MPa

YS (a),

MPa

Elongation in A50, %

Hardness

Shear strength, MPa

Fatigue strength (b), MPa

HRF

HRB

HR30T

Flat products, 1 mm thick

M20

235

69

45

45

-

-

160

-

OS025

235

76

45

45

-

-

160

76

OS050

220

69

45

40

-

-

150

-

H00

250

195

30

60

10

25

170

-

H01

260

205

25

70

25

36

170

-

H02

240

250

14

84

40

50

180

90

H04

345

310

6

90

50

57

195

90

H08

380

345

4

94

60

63

200

95

H10

395

360

4

95

62

64

200

-

Flat products, 6 mm thick

M20

220

69

50

40

-

-

150

-

OS050

220

69

50

40

-

-

150

-

H00

250

195

40

60

10

-

170

-

H01

260

205

35

70

25

-

170

-

H04

345

310

12

90

50

-

195

-

Flat products, 25 mm thick

H04

310

275

20

85

45

-

180

-

Rod, 6 mm in diameter

H80 (40%)

380

345

10

94

80

-

200

-

Rod, 25 mm in diameter

M20

220

69

55 (c)

40

-

-

150

-

OS050

220

69

55 (c)

40

-

-

150

-

H80 (35%)

330

305

16 (d)

87

47

-

185

115

Rod, 50 mm in diameter

H18 (16 %)

310

275

20

85

45

-

180

-

Wire, 2 mm in diameter

OS050

240

-

35 (e)

45

-

-

165

-

H04

380

-

1.5 (f)

-

-

-

200

-

H08

455

-

1.5 (f)

-

-

-

230

-

Tubing, 25 mm outside diameter, 1.65 mm wall thickness

OS025

235

76

45

45

-

-

160

-

OS050

220

69

45

40

-

-

150

-

H55 (15%)

275

220

25

77

35

45

180

-

H80 (40%)

380

345

8

95

60

63

200

-

Shapes, 13 mm in diameter

M20

220

69

50

45

-

-

150

-

M30

220

69

50

45

-

-

150

-

OS050

220

69

50

45

-

-

150

-

H80 (15%)

275

220

30

-

35

-

180

-

(a) At 0.5% extension under load. (b) At 108 cycles. (c) 70% reduction in area. (e) Elongation in 254 mm. (f) Elongation in 1500 mm.

 

Mechanical properties of CuOF1, CuOF, CuOFE according to KME

Temper

UTS, MPa

YS, MPa

Elongation A50, %

Hardness HV

R200

200 - 250

≤ 100

(≥ 2,5 mm) 42

40 - 65

R220

220 - 260

< 140

33

40 - 65

R240

240 - 300

≥ 180

8

65 - 95

R290

290 - 360

≥ 250

4

90 - 110

R360

≥ 360

≥ 320

2

≥ 110

(a) Annealed

 

Mechanical properties of CuOF1, CuOF, CuOFE (flat, round, square, hexagonal) according to Aurubis

Metallurgical State D

Dimensions, mm

Hardness

UTS MPa

YS,

MPa

Elongation

Round, square, hexagonal

Thickness

Width

HB

HV

A100 [%]

A

[%]

From

up to

To

From

Up to

To

From

Up to

To

Min.

Max.

Min.

Max.

D

2

-

80

0.5

-

40

1

-

200

Cold drawn product without any specific mechanical properties

H035 (a)

2

-

80

0.5

-

40

1

-

200

35

65

35

65

-

-

-

-

R200 (a)

2

-

80

1,0

-

40

5

-

200

-

-

-

-

200

Max.120

25

35

H065

2

-

80

0,5

-

40

1

-

200

65

90

70

95

-

-

-

-

R250

2

-

10

1,0

-

10

5

-

200

-

-

-

-

250

Min. 200

8

12

R250

2

10

30

-

-

-

-

-

-

-

-

-

-

250

Min. 180

-

15

R230

-

30

80

-

10

40

-

10

200

-

-

-

-

230

Min. 160

-

18

H085

2

-

40

0,5

-

20

1

-

120

85

110

90

115

-

-

-

-

H075

-

40

80

-

20

40

-

20

160

75

100

80

105

-

-

-

-

R300

2

-

20

1,0

-

10

5

-

120

-

-

-

-

300

Min. 260

5

8

R280

-

20

40

-

10

20

-

10

120

-

-

-

-

280

Min. 240

-

10

R260

-

40

80

-

20

40

-

20

160

-

-

-

-

260

Min. 220

-

12

H100

2

-

10

0,5

-

5

1

-

120

100

-

110

-

-

-

-

-

R350

2

-

10

1,0

-

5

5

-

120

-

-

-

-

350

Min. 320

3

5

(a) Annealed

 

Mechanical properties of CuOF1, CuOF, CuOFE (profiles) according to Aurubis

Metallurgical State

Dimensions, mm

Hardness

UTS MPa

YS,

MPa

Elongation

Thickness

Width

HB

HV

A100 [%]

A

[%]

Max.

Max.

Min.

Max.

Min.

Max.

Min.

D

50

180

Same as drawn

H035 (a)

50

180

35

65

35

70

-

-

-

-

R200 (a)

50

180

-

-

-

-

200

Max. 120

25

35

H065

10

150

65

95

70

100

-

-

-

 

R240

10

150

-

-

-

-

240

Min. 160

-

15

H080

5

100

80

115

85

120

-

-

-

-

R280

5

100

-

-

-

-

280

Min. 240

-

8

(a) Annealed

 

Mechanical properties of CuOF1, CuOF, CuOFE wire rod

Production technology

Casting speed

YS

UTS

Elongation A250

[m/min.]

[MPa]

[MPa]

[%]

Upcast

4,0

138,3

183,9

35,3

3,0

140,1

185,8

36,5

2,0

132,3

186,8

36,6

1,0

134,6

194,1

35,2

0,5

112,2

182,5

39,5

DCC-AGH

0,2

46,4

141,5

28,2

0,15

41,2

143,4

36,2

0,06

40,1

145,3

35,8

0,03

39,7

161,4

39,2

0,006

36,1

168,2

25,5

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) from DCC-AGH, Upcast and Rautomead lines

Mechanical properties of CuOFE wire rod obtained in the Upcast process with different parameters of continuous casting process

The flow rate of cooling water in the crystallizer

Casting speed

YS

UTS

ElongationA250

[l/min.]

[m/min.]

[MPa]

[MPa]

[%]

40

1,0

140,3

195,6

36,1

2,0

139,1

188,7

36,7

3,0

140,8

183,5

36,2

4,0

139,5

183,1

37,0

50

1,0

130,2

196,0

35,0

2,0

123,1

187,6

35,5

3,0

125,0

182,3

35,9

4,0

127,3

181,2

36,0

60

1,0

134,6

194,1

35,2

2,0

132,3

186,8

36,6

3,0

140,1

185,8

36,5

4,0

138,3

183,9

35,3

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 1.0m/min. casting speed and different values flow rate of cooling water in the crystallizer

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 2.0m/min. casting speed and different values flow rate of cooling water in the crystallizer

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 3.0m/min. casting speed and different values flow rate of cooling water in the crystallizer

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 4.0m/min. casting speed and different values flow rate of cooling water in the crystallizer

Amount of turns until breaking in static torsion test of CuOFE wire rod (diameter 8.0mm)

Production technology

Casting speed

Amount of turns until breaking

[m/min.]

[n]

Rautomead

4,00

81,2

Upcast

4,00

81,5

3,00

80,8

2,00

76,5

1,00

61,7

0,50

56,1

DCC-AGH

0,20

53,1

0,15

52,3

0,06

49,7

0,03

47,8

0,006

46,1

Amount of turns until breaking in static torsion test of CuOFE wire rod (diameter 8.0mm) casting with different speed

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) with a chemical purity of 6N and 8N by Fujiwara

Mechanical properties of CuOFE wire rod (diameter 8.0mm) used in electrical application

Material

CuOFE

Production technology

-

Upcast, Rautomead

Ohno

Chemical composition

Cu + Ag

[%wt]

99,99

99,99

99,999

Content by weight of elements

[ppm]

50

20

10

Oxygen

[ppm]

< 5

< 3

1

UTS

[MPa]

180 – 200

180

160

Elongation A250

[%]

35 – 55

35 – 50

50

Ductility

[mm]

0,05

0,01

0,01

Brinell hardness vs casting speed of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)

Yield stress as a function of true strain for Cu-OFE wires (diameter 0.5-8.0 mm) - after drawing process

Ultimate tensile strength as a function of true strain for Cu-OFE wires (diameter 0.5-8.0 mm) - after drawing process

UTS/YS ratio vs strain of Cu-OFE wires (diameter 0,5-8.0 mm) after drawing process

Elongation A250 vs strain of Cu-OFE wires (diameter 0,5-8.0 mm) after drawing process

Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) after drawing process -logarithmic system

Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) after drawing process - logarithmic scale

Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0m/min.) based on wire rod from continuous casting process after drawing process

Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0m/min.) based on wire rod from continuous casting process after drawing process

Elongation A250 vs strain of Cu-OFE wires (diameter 0.5-8.0m/min.) based on wire rod from continuous casting process after drawing process

Hardness of Vickers (HV) for OF copper vs temperature

Remarks: In the log-scale a breaking point often can be observed at the recrystallization temperature (0,45-0,55 Th)

Effect of homologous temperature on the Brinell hardness and tensile strength Rm. Oxygen free copper; log-scale of HB and Rm

Dependence of the Brinell hardness of OFE copper on the homologous temperature Th

Effect of temperature on the tensile elasticity modulus E of the oxygen free copper

Shear strength results of copper bonds (99.99% pure annealed copper wires, 381 μm in diameter)

Maximum shear force versus bonding time for 300 μm OFC wires and two different bonding profiles (high or low ultrasonic power) without annealing (a) and after annealing at 300 °C (b)

Exploitation properties

Effect of low temperatures on the mechanical properties of Cu-OFE copper

Metal and crystal

structure

Material condition

Temperature

[°C]

Tensile strength/yield limit

[MPa]

Elongation

[%]

Reduction

of area

[%]

Cu 99,99; K12

Annealed

20

221/60

48

78

-40

238/65

47

77

-80

270/71

47

74

-120

290/76

45

70

-180

358/81

58

77

Cu 99,99; K12

Cold-worked without annealing

20

300/293

18

71

-40

355/316

23

69

-70

435/322

44

69

-100

-

-

-

-180

413/350

43

-

-253

460/-

48

34

Remarks: As can be seen from the table, OFE copper (FCC metal) preserve ductility at low temperatures.

 

Mechanical properties vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 1 hour annealing process

Elongation A250 vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 1 hour annealing process

Elevated-temperature tensile properties of CuOFE rod, H80 temper

Low-temperature mechanical properties of CuOFE bar

Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) with chemical purity 6N and 8N after annealing process in different temperatures by Fujiwara

Stress–strain curves at 293 and 77 K for OFC wire (0,506 mm in diameter) prepared from the SPS cylinder and at 293 K for the corresponding conventional wire

Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) obtained from wire rod after annealing process

Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) obtained from wire rod after annealing process

Elongation vs strain of Cu-OFE wires (diameter 0.5-8.0 mm) obtained from wire rod after annealing process

Softening resistance of copper with chemical purity 3N, 6N and 8N by Fujiwara

Microhardness and spring elongation test results for wires with a diameter of 1.2 mm after the annealing process in a salt bath and cooled in water. Identification of specimen: 1 - 99.98% Cu, 0.0005% O (Cu-OFE); 2 - 99.99% Cu, 0.0005% O (arc melted copper); 3 - 99.95% Cu, 0,02% (Cu-ETP), 4 - 99.999% Cu, 0.0001% O (5N copper) by Berin

Softening resistance of Cu-OFE wires

Softening resistance of Cu-OFE wires           

Softening resistance of Cu-OFE wires

Mechanical properties vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process. The UTS of CuOFE wire rod increases after heat treatment at high temperatures from 600 °C to 900 °C. It is different from other materials because of its different structural state.

UTS/YS ratio vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process

Elongation A250 vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process

Percentage reduction of area vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process

Half-softening temperature of Cu-OFE wire

Diameter of wire

Strain

Half-softening temperature

[mm]

[-]

[°C]

7,0

0,28

335

5,5

0,76

280

4,5

1,16

260

2,5

2,38

220

0,5

5,59

170

Excellent hydrogen embrittlement resistance

 

Type of corrosion

Suitability

Literature

Atmospheric

Formation of the a greenish protective patina due to the formation of copper basic salts (such sulphates, chlorides in marine environment, nitrates and carbonates). CuOFE has a good resistance in in natural and industrial atmosphere (maritime air too).

Marine environment

Good

Stress crack

Good

Hydrogen embrittlement

Excellent

 

Electrolytic

Good

Other

Resistant to: industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapour (steam), non-oxidizing acids (without oxygen in solution) and salts, neutral saline solutions. Material can be heat-treated in reducing atmosphere. Not resistant to: oxidising acids, solutions containing cyanides, ammonia or halogens, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater.

Stress rupture properties of CuOF1, CuOF and CuOFE (C10100, C10200)

Temper or condition

Test temperature

Stress(a) for rupture in

10h

100h

1000h

°C

MPa

OS025(b)

150

-

161

147

200

-

130

106

Cold drawn 40%(c)

120

-

272

245

150

-

241

215

H80(d)

450

33

17

-

650

9.7

5.2

-

(a) Parentheses indicate extrapolated values

(b) Tensile strength 238 MPa at 21 °C

(c) Tensile strength 352 MPa at 21 °C

(d) Tensile strength 426 MPa at 21 °C

Creep properties of CuOF1, CuOF and CuOFE (C10100, C10200)

Condition and grain size

Test temperature

Stress(a) for creep rate of

10-6 %/h

10-5 %/h

10-4 %/h

10-3 %/h

10-2 %/h

10-1 %/h

°C

MPa

OS025(b)

43

-

-

-

170

185

200

120

-

-

-

125

150

165

150

11

25

55

110

130

150

205

3

10

33

-

-

-

260

0.7

3

12

-

-

-

370

-

-

-

-

21

40

480

-

-

-

-

9.9

23

Cold drawn 40%(c)

43

-

-

-

310

330

-

120

-

-

-

240

270

295

150

-

-

-

200

235

250

370

-

-

-

11

26

39

480

-

-

-

-

8.3

17

650

-

-

-

-

3

6

Cold drawn 84%(d)

150

-

55

89.6

-

-

-

205

4.5

12

35

-

-

-

(a) Parentheses indicate extrapolated values

(b) Tensile strength 220 MPa at 21 °C

(c) Tensile strength 352 MPa at 21 °C

(d) Tensile strength 376 MPa at 21 °C

Literature:

Temper

Fatigue strength at 108 cycles, MPa

Flat products, 1 mm thick

OS025

76

H02

90

H04

90

H08

95

Rod, 25 mm in diameter

H80 (35%)

115

Literature:

 

The fatigue strength gives an indication about the resistance to variations in applied tension. It is measured under symmetrical alternating load. The maximum bending load for 107 load cycles without crack is measured. Dependent on the  temper class it is approximately 1/3 of the tensile strength Rm .

Table of fatigue limits of OFE copper at room temperature

Metal

Type

of

material

Corresponding mechanical properties

in MPa and elongation [%]

Fatigue limit

[MPa]

Basic number of cycles

Cu 99,997

Wire rod, cold-worked 20%

Rm=357

Reversed Bending 120

108

El. 14%

Red of Area 88%

Charpy impact strength at low temperature of oxygen free copper

Effect of low temperatures on the impact strength of Cu-OFE copper

Metal and crystal

structure

Material condition

Temperature

[°C]

Tensile strength/yield limit

[Mpa]

Elongation

[%]

Reduction

of area

[%]

Impact

strength

[Kgm/cm2]

Cu 99,99; K12

Annealed

20

221/60

48

78

-40

238/65

47

77

-80

270/71

47

74

-120

290/76

45

70

-180

358/81

58

77

Cold-worked without annealing

20

300/293

18

71

11

-40

355/316

23

69

12

-70

435/322

44

69

13

-100

-

-

-

14

-180

413/350

43

-

15

-253

460/-

48

34

13

Metal and crystal

structure

Material condition

Temperature

[°C]

Tensile strength/yield limit

[Mpa]

Elongation

[%]

Reduction

of area

[%]

Impact

strength

[Kgm/cm2]

Cu 99,985; K12

Annealed

20

221/60

48

78

 

-40

238/65

47

77

 

-80

270/71

47

74

 

-120

290/76

45

70

 

-180

358/81

58

77

 

Cold-worked without annealing

20

300/293

18

71

11

-40

355/316

23

69

12

-70

435/322

44

69

13

-100

-

-

-

14

-180

413/350

43

-

15

-253

460/-

48

34

13

Fabrication properties

Fabrication properties
Value Comments
SolderingExcellent

BrazingExcellent

Hot dip tinningExcellent

Electrolytic tinningExcellent

Electrolytic silveringExcellent

Electrolytic nickel coatingExcellent

Laser weldingFair

Oxyacetylene WeldingFair

Gas Shielded Arc WeldingExcellent

Coated Metal Arc WeldingNot Recommended

Resistance weldingLess suitable

Spot WeldNot Recommended

Seam WeldNot Recommended

Butt WeldGood

Capacity for Being Hot FormedExcellent

Forgeability Rating65
[%]
Machinability Rating20
[%] Less suitable

Cross-sectional area of Cu-OF weld seams in butt joint configuration: Cu-OF joints welded with filler wire with different coatings; lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.

Weld seam width at the top side of Cu-OF weld seams in butt joint configuration: Cu-OF joints welded with filler wire with different coatings; lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.

Electrical resistance of Cu-OF weld seams in butt joint configuration: Cu-OF joints welded with filler wire with different coatings; lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.

Stress-Strain-Diagrams of Cu-OF joints welded in butt joint configuration: Left hand side: Cu-OF joints welded without coating (Wire A), with nickel coating of 5 µm thickness (Wire B) and with nickel coating of 20 µm thickness (Wire C); right hand side: Cu-OF joints welded without coating (Wire A), with tin coating of 5 µm thickness (Wire D) and with tin coating of 20 µm thickness (Wire C); all: lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.

Stress-strain curves for OFC samples machined with various feeds (The machining of the test rods was done at three different feed levels: 0,15; 0,25 and 0,35 mm/rev in the middle part of the test rods marked in red)

Detail of the stress-strain curves in the elastic region

Yield strength for each test rod and average yield strength

Observed and average values of different deformation depths compared to different feeds

Technological properties

Technological properties
Melting temperature
[°C]
Casting temperature
[°C]
CastabilityAnnealling temperature
[°C]
Homogenization temperature
[°C]
Quenching temperature
[°C]
Ageing temperature
[°C]
Stress relievieng temperature
[°C]
Hot working temperature
[°C]
1083
1140-1200
No data 375-600
No data No data No data 150-650
Comments:
Stress relievieng time: 1-3h
750-875
Copyrights © LTPMN 2012. All rights reserved