CuOFE EN: CR009A, CW009A UNS: C10100 |
Cu-OF, Cu-OFE, OFE-OK®
Cupori 411 Cu-OF, Cupori 421 Cu-OF, Cupori 431 LWC Cu-OF, Cupori 461 Solar Cu-OF, Cupori 471 Oval Cu-OF, Cupori 481 Cu-OF
C101 - Oxygen Free Certified (Electronic & Cryogenic Grades), C102 - Oxygen Free Copper
Cu-OFE
KME169
Cu-OF1, Cu-OF, Cu-OFE
CuOF, CuOFE, OF-OK™
MB-OF 100, MB-OF 101 CERTYFIED, MB-OFN
OF copper oxygen-free Cu-c1
Oxygen Free Copper (OFC)
C10100, C10200
C101, C102
C101, C102
C101, C102
CuOFE (CuOF1 - EN: CR007A, CW007A, UNS: C10200 and CuOF - EN: CR008A, CW008A, UNS: C10200) is a high purity, oxygen free, non-phosphorus-deoxidized copper that does not contain in vacuum evaporating elements. It has a very high electrical and thermal conductivity, good welding and excellent soldering properties. It has excellent hot and cold forming properties, and a good corrosion resistance, especially in atmosphere due to a good adherence of the oxide layer. CuOF can be heat treated in reducing atmosphere. Characteristics are high ductility, high impact strength, good creep resistance and low relative volatility under high vacuum. The alloy is registered US EPA antimicrobial. The lack of oxygen in oxygen free copper is the main reason for the improvement of its plasticity, electric conductivity, resistance to corrosion and resistance to hydrogen embrittlement relative to ETP copper. Oxygen content below 5 ppm makes it impossible for copper oxides, CuO and Cu2O, which hinder the process of drawing wires with diameters of less than 0.1 mm, to form. Furthermore, the presence of copper oxides leads to a decrease in corrosion resistance and makes heat treatment in a hydrogen atmosphere impossible (hydrogen embrittlement). Copper is cathodic to hydrogen in the electromotive series and therefore is the cathode in galvanic couples with other base metals such as iron, aluminium, magnesium, lead, tin and zinc. C10100 and C10200 have excellent resistance to atmospheric corrosion and to corrosion by most waters, including brackish water and seawater. They have good resistance to nonoxidizing acids but poor resistance to oxidizing acids, moist ammonia, moist halogens, sulfides, and solutions containing ammonium ions. CuOFE is produced by the direct conversion of selected refined cathodes and castings under carefully controlled conditions to prevent contamination of the pure oxygen-free metal during processing. The method of producing OFHC copper ensures extra high grade of metal with a copper content of 99.99%. With so small a content of extraneous elements, the inherent properties of elemental copper are brought forth to a high degree.
Literature:
Basic properties
|
|||||
Density [g/cm3] | Specific heat capacity [J/(kg*K)] | Temperature coefficient of electrical resistance (0...100°C) [10-3/K] | Electrical conductivity [T=20°C, (% IACS)] | Thermal conductivity [W/(m*K)] | Thermal expansion coefficient 20...300°C [10-6/K] |
8,890-8,944 | 385 | 3,9-4,3 Comments: Depends on purity. 4,27 Comments: Resistance alloy (0 to 50°C) | 96,6-101 Comments: min, as spec, ASTM | 383-394 | 17,7 |
Electrical resistivity vs casting speed of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)
Electrical conductivity vs casting speed of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)
Electrical conductivity vs casting speed and macrostructure of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)
The influence of oxygen on the electrical conductivity of copper with purity from 3N (99.90% Cu) to 5N (99.999% Cu)
The influence of impurities on the electrical conductivity of CuOFE
The solubility of sulfur, selenium and tellurium in CuOFE depending on the temperature
Electrical resistivity vs strain of CuOFE wire based on wire rod from continuous casting process - Upcast technology (casting speed 0,5-4.0m/min.) and DCC-AGH method (casting speed 0.006-0.2m/min.)
Electrical resistivity vs casting speed of CuOFE wire based on wire rod from continuous casting process - Upcast and DCC-AGH
Electrical conductivity vs strain of CuOFE wire based on wire rod from continuous casting process - Upcast technology (casting speed 0,5-4.0m/min.) and DCC-AGH method (casting speed 0.006-0.2m/min.)
Electrical conductivity vs casting speed of CuOFE wire based on wire rod from continuous casting process - Upcast and DCC-AGH
Electrical conductivity vs strain of CuOFE wire based on wire rod from continuous casting process - Upcast technology (casting speed 0,5-4.0m/min.) and DCC-AGH method (casting speed 0.006-0.2m/min.)
Electrical conductivity vs casting speed of CuOFE wire based on wire rod from continuous casting process - Upcast and DCC-AGH
The assortment of oxygen free copper products is very broad and is concentrated mainly on highly advanced products. Oxygen free copper of the highest quality is mainly used in electron technology (accelerator elements and electron tubes), vacuum apparatus, cryogenics (elements operating at low temperatures), superconduction, cable technology (connecting elements, microwires, enamelled conductors, transmission conductors, conductors for applications in information technology, audio-video conductors). Interest in the dynamically developing oxygen free copper electro-technical industry, its production technology, as well as its physical and mechanical properties, is a result of the wide applications of this material. One application of oxygen free copper is the production of wires and microwires with diameters of less than 0.1 mm. Such capacity for use of oxygen free copper in the drawing process is related to the limited potential of the traditionally used ETP grade copper for electric applications, characterized by its content of hard copper oxides (Cu2O) with sizes of 5÷10 µm, which, for very small wire diameters, significantly decrease their ductility. It is the chemical purity of copper that is the guarantor and fundamental requirement for obtaining high electric conductivity of the material.
A lack of oxygen in OFE copper lowers the danger of hydrogen embrittlement, guaranteeing failure-free operation of fire-resistant cables during a fire, assuming that the wires are made of oxygen-free copper. Therefore fire-resistant cables made from OFE copper are used in in public utility facilities (hospitals, schools, hotels, airports, elevators, tunnels) where must meet many stringent fire protection requirements. In particular, it concerns the need for safe evacuation in the event of a fire.
Moreover typical uses of oxygen free copper are busbars, waveguides, lead-in wire, anodes, vacuum seals, transistor components, glass-to-metal seals, coaxial cables, klystrons, microwave tubes. Heating in oxidizing atmospheres at high temperatures should be avoided because of the danger of oxidation.
Literature:
Forms Available: Flat products, pipe, rod, shapes, tubing, wire
CuOFE (C10100) | ||
---|---|---|
Product | Specification | Literature |
Flat products | ASTM B48 | |
ASTM B133 | ||
ASTM B152 | ||
ASTM B187 | ||
ASTM B272 | ||
ASTM B432 | ||
ASTM F68 | ||
Pipe | ASTM B423 | |
ASTM B188 | ||
ASTM F68 | ||
Rod | ASTM B12 | |
ASTM B49 | ||
ASTM B133 | ||
ASTM B187 | ||
ASTM F68 | ||
QQ-C-502 | ||
Shapes | ASTM B133 | |
ASTM B187 | ||
ASTM B68 | ||
Tubing | ASTM B372 | |
ASTM B68 | ||
ASTM B75 | ||
ASTM B188 | ||
ASTM B280 | ||
ASTM F68 | ||
Wire | ASTM B1 | |
ASTM B2 | ||
ASTM B3 | ||
ASTM F68 |
CuOF1, CuOF (C10200) | ||
---|---|---|
Product | Specification | Literature |
Flat products | ASTM B48 | |
ASTM B133 | ||
ASTM B152 | ||
ASTM B187 | ||
ASTM B272 | ||
ASTM B370 | ||
ASTM B432 | ||
QQ-C-576 | ||
Pipe | ASTM B423 | |
ASTM B188 | ||
Rod | ASTM B12 | |
ASTM B49 | ||
ASTM B124 | ||
ASTM B133 | ||
ASTM B187 | ||
QQ-C-502 | ||
Shapes | ASTM B124 | |
ASTM B133 | ||
ASTM B187 | ||
QQ-C-502 | ||
Tubing | ASTM B68 | |
ASTM B75 | ||
ASTM B88 | ||
ASTM B111 | ||
ASTM B188 | ||
ASTM B280 | ||
ASTM B359 | ||
ASTM B372 | ||
ASTM B395 | ||
ASTM B447 | ||
WW-T-775 | ||
Wire | ASTM B1 | |
ASTM B2 | ||
ASTM B3 | ||
ASTM B33 | ||
ASTM B470 | ||
ASTM B116 | ||
ASTM B189 | ||
ASTM B246 | ||
ASTM B286 | ||
ASTM B298 | ||
ASTM B355 | ||
QQ-C-502 | ||
QQ-W-343F | ||
MIL-W-3318 |
Chemical composition
|
Value | Comments | |
Ag [ wt.% ] | 0,0025 | ||
As [ wt.% ] | 0,0005 | ||
Bi [ wt.% ] | 0,0002 | ||
Cd [ wt.% ] | 0,0001 | ||
Cu [ wt.% ] | 99,99 | ||
Fe [ wt.% ] | 0,001 | ||
Mn [ wt.% ] | 0,0005 | ||
Ni [ wt.% ] | 0,001 | ||
P [ wt.% ] | 0,0003 | ||
Pb [ wt.% ] | 0,0005 | ||
S [ wt.% ] | 0,0015 | ||
Sb [ wt.% ] | 0,0004 | ||
Se [ wt.% ] | 0,0002 | ||
Sn [ wt.% ] | 0,0002 | ||
Te [ wt.% ] | 0,0002 | ||
Zn [ wt.% ] | 0,0001 |
Chemical composition, wt% | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag |
As |
Bi |
Cd |
Co |
Cr |
Fe |
Mn |
Ni |
P |
Pb |
S |
Sb |
Se |
Si |
Sn |
Te |
Zn |
Others |
Cu |
max. | |||||||||||||||||||
0,00 25
|
0,00 05 1) |
0,00 02 2) |
0,0001-1) |
-3) |
-1) |
0,00 10 3) |
0,0005-1) |
0,0010-3) |
0,0003-1) |
0,00 05 |
0,00 15 |
0,00 04 1) |
0,00 02 2) |
-3) |
0,0002-3) |
0,00 02 |
0,0001-3) |
The oxygen content shall be such that the material conforms to the hydrogen embrittlement requirement |
min. 99,99 |
1) (As + Cd + Cr + Mn + P + Sb) maximum 0,0015% |
|||||||||||||||||||
2) (Bi + Se + Te) maximum 0,0003%, including (Se + Te) maximum 0,00030% |
|||||||||||||||||||
3) (Co + Fe + Ni + Si + Sn + Zn) maximum 0,0020% |
|||||||||||||||||||
Literature: |
Chemical composition of CuOF according to EN 1976, EN 1977
Chemical composition, wt% | |
---|---|
Other named elements |
Cu1) |
min. | |
0.0010 O |
99,95 |
1) Including Ag with maximum 0,015% |
|
Literature: |
Chemical composition of CuOFE according to Copper Development Association Inc.
Chemical composition, wt% | |||||
---|---|---|---|---|---|
As |
Sb |
P |
Te |
Others |
Cu including Ag |
max. |
min. | ||||
0,0005 |
0,0004 |
0,0003 |
0,0002 |
The oxygen content shall be such that the material conforms to the hydrogen embrittlement requirement. The following additional maximum limits apply: Bi 0,0001%; Cd 0,001%; Fe 0,0010%; Pb 0,0005%; Mn 0,00005%; Hg 0,0001%; Ni 0,0010%; oxygen 0,0005%; Se 0,0003%; Ag 0,0025%; S 0,0015%; Sn 0,0002%; Zn 0,0001%. |
99,99 |
Literature: |
Chemical composition, wt% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bi |
Fe |
Mn |
Ni |
P |
Pb |
Sn |
Zn |
Others |
Others |
Cu |
max. |
min. | |||||||||
0,0002 |
0,0010 |
0,0005 |
0,0010 |
0,0003 |
0,0005 |
0,0002 |
0,0001 |
%Ag<0,025; %As<0,0005; %Cd<0,0001; %S<0,0015; %Sb<0,0004; %Se<0,0002; %Te<0,0002 |
The oxygen content shall be such that the material conforms to the hydrogen embrittlement requirement |
99,99 |
Literature: |
Chemical composition, wt% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bi |
Cd |
Hg |
O |
P |
Pb |
S |
Se |
Te |
Zn |
Total Others |
Cu |
max. |
min. | ||||||||||
0,0010 |
0,0001 |
0,0001 |
0,0030 |
0,0003 |
0,0010 |
0,0018 |
0,0010 |
0,0010 |
0,0001 |
As + Sb + Bi + Cd + Se + Te + Sn + Mg |
99,99 Excluding Ag |
Literature: |
|
Tech- no- logy |
Chemical composition, wt% | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag |
As |
Bi |
Cd |
Co |
Cr |
Fe |
Mn |
Ni |
O2 |
P |
Pb |
S |
Sb |
Se |
Sn |
Te |
Zn |
Total Exclu- ding O2 | |
Rauto- mead |
0,00 10 |
0,00 005 |
0,00 002 |
0,00 00 01 |
0,00 00 05 |
0,00 00 04 |
0,00 017 |
0,00 00 03 |
0,00 016 |
0,00 04 |
0,00 001 |
0,00 009 |
0,00 022 |
0,00 007 |
0,00 001 |
0,00 003 |
0,00 001 |
0,00 016 |
0,00 20 |
Upcast |
0,00 09 |
0,00 004 |
0,00 001 |
0,00 00 01 |
0,00 00 04 |
0,00 00 02 |
0,00 016 |
0,00 00 03 |
0,00 015 |
0,00 015 |
0,00 001 |
0,00 009 |
0,00 012 |
0,00 008 |
0,00 001 |
0,00 003 |
0,00 001 |
0,00 014 |
0,00 18 |
DCC- AGH |
0,00 09 |
0,00 003 |
0,00 001 |
0,00 00 01 |
0,00 00 03 |
0,00 00 01 |
0,00 014 |
0,00 00 02 |
0,00 011 |
0,00 007 |
0,00 02 |
0,00 006 |
0,00 01 |
0,00 004 |
0,00 0003 |
0,00 001 |
0,00 001 |
0,00 011 |
0,00 17 |
Mechanical properties
|
||||||
UTS [MPa] | YS [MPa] | Elongation [%] | Hardness | Young’s modulus [GPa] | Kirchhoff’s modulus [GPa] | Poisson ratio |
140-455 | 35-365 140-220 Comments: Hardened | 4-55 | 45-70 Comments: HBW 40-95 Comments: HRF 10-80 Comments: HRB 25-65 Comments: HR30T 75-90 Comments: HV (1/2 hard) 90-105 Comments: HV (full hard) | 115 112-131 Comments: Annealed 131,3 Comments: Min. 99,99%, Forged and annealed 800°C | 44 46,4 Comments: Annealed 46-48 Comments: Annealed | 0,31-0,35 |
Temper |
UTS, MPa |
YS (a), MPa |
Elongation in A50, % |
Hardness |
Shear strength, MPa |
Fatigue strength (b), MPa | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HRF |
HRB |
HR30T | |||||||||||
Flat products, 1 mm thick | |||||||||||||
M20 |
235 |
69 |
45 |
45 |
- |
- |
160 |
- |
|||||
OS025 |
235 |
76 |
45 |
45 |
- |
- |
160 |
76 |
|||||
OS050 |
220 |
69 |
45 |
40 |
- |
- |
150 |
- |
|||||
H00 |
250 |
195 |
30 |
60 |
10 |
25 |
170 |
- |
|||||
H01 |
260 |
205 |
25 |
70 |
25 |
36 |
170 |
- |
|||||
H02 |
240 |
250 |
14 |
84 |
40 |
50 |
180 |
90 |
|||||
H04 |
345 |
310 |
6 |
90 |
50 |
57 |
195 |
90 |
|||||
H08 |
380 |
345 |
4 |
94 |
60 |
63 |
200 |
95 |
|||||
H10 |
395 |
360 |
4 |
95 |
62 |
64 |
200 |
- |
|||||
Flat products, 6 mm thick | |||||||||||||
M20 |
220 |
69 |
50 |
40 |
- |
- |
150 |
- |
|||||
OS050 |
220 |
69 |
50 |
40 |
- |
- |
150 |
- |
|||||
H00 |
250 |
195 |
40 |
60 |
10 |
- |
170 |
- |
|||||
H01 |
260 |
205 |
35 |
70 |
25 |
- |
170 |
- |
|||||
H04 |
345 |
310 |
12 |
90 |
50 |
- |
195 |
- |
|||||
Flat products, 25 mm thick | |||||||||||||
H04 |
310 |
275 |
20 |
85 |
45 |
- |
180 |
- |
|||||
Rod, 6 mm in diameter | |||||||||||||
H80 (40%) |
380 |
345 |
10 |
94 |
80 |
- |
200 |
- |
|||||
Rod, 25 mm in diameter | |||||||||||||
M20 |
220 |
69 |
55 (c) |
40 |
- |
- |
150 |
- |
|||||
OS050 |
220 |
69 |
55 (c) |
40 |
- |
- |
150 |
- |
|||||
H80 (35%) |
330 |
305 |
16 (d) |
87 |
47 |
- |
185 |
115 |
|||||
Rod, 50 mm in diameter | |||||||||||||
H18 (16 %) |
310 |
275 |
20 |
85 |
45 |
- |
180 |
- |
|||||
Wire, 2 mm in diameter | |||||||||||||
OS050 |
240 |
- |
35 (e) |
45 |
- |
- |
165 |
- |
|||||
H04 |
380 |
- |
1.5 (f) |
- |
- |
- |
200 |
- |
|||||
H08 |
455 |
- |
1.5 (f) |
- |
- |
- |
230 |
- |
|||||
Tubing, 25 mm outside diameter, 1.65 mm wall thickness | |||||||||||||
OS025 |
235 |
76 |
45 |
45 |
- |
- |
160 |
- |
|||||
OS050 |
220 |
69 |
45 |
40 |
- |
- |
150 |
- |
|||||
H55 (15%) |
275 |
220 |
25 |
77 |
35 |
45 |
180 |
- |
|||||
H80 (40%) |
380 |
345 |
8 |
95 |
60 |
63 |
200 |
- |
|||||
Shapes, 13 mm in diameter | |||||||||||||
M20 |
220 |
69 |
50 |
45 |
- |
- |
150 |
- |
|||||
M30 |
220 |
69 |
50 |
45 |
- |
- |
150 |
- |
|||||
OS050 |
220 |
69 |
50 |
45 |
- |
- |
150 |
- |
|||||
H80 (15%) |
275 |
220 |
30 |
- |
35 |
- |
180 |
- |
|||||
(a) At 0.5% extension under load. (b) At 108 cycles. (c) 70% reduction in area. (e) Elongation in 254 mm. (f) Elongation in 1500 mm. |
|||||||||||||
Mechanical properties of CuOF1, CuOF, CuOFE according to KME
Temper |
UTS, MPa |
YS, MPa |
Elongation A50, % |
Hardness HV |
---|---|---|---|---|
R200 |
200 - 250 |
≤ 100 |
(≥ 2,5 mm) 42 |
40 - 65 |
R220 |
220 - 260 |
< 140 |
33 |
40 - 65 |
R240 |
240 - 300 |
≥ 180 |
8 |
65 - 95 |
R290 |
290 - 360 |
≥ 250 |
4 |
90 - 110 |
R360 |
≥ 360 |
≥ 320 |
2 |
≥ 110 |
(a) Annealed |
Metallurgical State D |
Dimensions, mm |
Hardness |
UTS MPa |
YS, MPa |
Elongation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Round, square, hexagonal |
Thickness |
Width |
HB |
HV |
A100 [%] |
A [%] | |||||||||||
From |
up to |
To |
From |
Up to |
To |
From |
Up to |
To |
Min. |
Max. |
Min. |
Max. | |||||
D |
2 |
- |
80 |
0.5 |
- |
40 |
1 |
- |
200 |
Cold drawn product without any specific mechanical properties |
|||||||
H035 (a) |
2 |
- |
80 |
0.5 |
- |
40 |
1 |
- |
200 |
35 |
65 |
35 |
65 |
- |
- |
- |
- |
R200 (a) |
2 |
- |
80 |
1,0 |
- |
40 |
5 |
- |
200 |
- |
- |
- |
- |
200 |
Max.120 |
25 |
35 |
H065 |
2 |
- |
80 |
0,5 |
- |
40 |
1 |
- |
200 |
65 |
90 |
70 |
95 |
- |
- |
- |
- |
R250 |
2 |
- |
10 |
1,0 |
- |
10 |
5 |
- |
200 |
- |
- |
- |
- |
250 |
Min. 200 |
8 |
12 |
R250 |
2 |
10 |
30 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
250 |
Min. 180 |
- |
15 |
R230 |
- |
30 |
80 |
- |
10 |
40 |
- |
10 |
200 |
- |
- |
- |
- |
230 |
Min. 160 |
- |
18 |
H085 |
2 |
- |
40 |
0,5 |
- |
20 |
1 |
- |
120 |
85 |
110 |
90 |
115 |
- |
- |
- |
- |
H075 |
- |
40 |
80 |
- |
20 |
40 |
- |
20 |
160 |
75 |
100 |
80 |
105 |
- |
- |
- |
- |
R300 |
2 |
- |
20 |
1,0 |
- |
10 |
5 |
- |
120 |
- |
- |
- |
- |
300 |
Min. 260 |
5 |
8 |
R280 |
- |
20 |
40 |
- |
10 |
20 |
- |
10 |
120 |
- |
- |
- |
- |
280 |
Min. 240 |
- |
10 |
R260 |
- |
40 |
80 |
- |
20 |
40 |
- |
20 |
160 |
- |
- |
- |
- |
260 |
Min. 220 |
- |
12 |
H100 |
2 |
- |
10 |
0,5 |
- |
5 |
1 |
- |
120 |
100 |
- |
110 |
- |
- |
- |
- |
- |
R350 |
2 |
- |
10 |
1,0 |
- |
5 |
5 |
- |
120 |
- |
- |
- |
- |
350 |
Min. 320 |
3 |
5 |
(a) Annealed |
Metallurgical State |
Dimensions, mm |
Hardness |
UTS MPa |
YS, MPa |
Elongation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Thickness |
Width |
HB |
HV |
A100 [%] |
A [%] | |||||
Max. |
Max. |
Min. |
Max. |
Min. |
Max. |
Min. | ||||
D |
50 |
180 |
Same as drawn |
|||||||
H035 (a) |
50 |
180 |
35 |
65 |
35 |
70 |
- |
- |
- |
- |
R200 (a) |
50 |
180 |
- |
- |
- |
- |
200 |
Max. 120 |
25 |
35 |
H065 |
10 |
150 |
65 |
95 |
70 |
100 |
- |
- |
- |
|
R240 |
10 |
150 |
- |
- |
- |
- |
240 |
Min. 160 |
- |
15 |
H080 |
5 |
100 |
80 |
115 |
85 |
120 |
- |
- |
- |
- |
R280 |
5 |
100 |
- |
- |
- |
- |
280 |
Min. 240 |
- |
8 |
(a) Annealed |
Mechanical properties of CuOF1, CuOF, CuOFE wire rod
Production technology |
Casting speed |
YS |
UTS |
Elongation A250 |
---|---|---|---|---|
[m/min.] |
[MPa] |
[MPa] |
[%] | |
Upcast |
4,0 |
138,3 |
183,9 |
35,3 |
3,0 |
140,1 |
185,8 |
36,5 |
|
2,0 |
132,3 |
186,8 |
36,6 |
|
1,0 |
134,6 |
194,1 |
35,2 |
|
0,5 |
112,2 |
182,5 |
39,5 |
|
DCC-AGH |
0,2 |
46,4 |
141,5 |
28,2 |
0,15 |
41,2 |
143,4 |
36,2 |
|
0,06 |
40,1 |
145,3 |
35,8 |
|
0,03 |
39,7 |
161,4 |
39,2 |
|
0,006 |
36,1 |
168,2 |
25,5 |
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) from DCC-AGH, Upcast and Rautomead lines
Mechanical properties of CuOFE wire rod obtained in the Upcast process with different parameters of continuous casting process
The flow rate of cooling water in the crystallizer |
Casting speed |
YS |
UTS |
ElongationA250 |
---|---|---|---|---|
[l/min.] |
[m/min.] |
[MPa] |
[MPa] |
[%] |
40 |
1,0 |
140,3 |
195,6 |
36,1 |
2,0 |
139,1 |
188,7 |
36,7 |
|
3,0 |
140,8 |
183,5 |
36,2 |
|
4,0 |
139,5 |
183,1 |
37,0 |
|
50 |
1,0 |
130,2 |
196,0 |
35,0 |
2,0 |
123,1 |
187,6 |
35,5 |
|
3,0 |
125,0 |
182,3 |
35,9 |
|
4,0 |
127,3 |
181,2 |
36,0 |
|
60 |
1,0 |
134,6 |
194,1 |
35,2 |
2,0 |
132,3 |
186,8 |
36,6 |
|
3,0 |
140,1 |
185,8 |
36,5 |
|
4,0 |
138,3 |
183,9 |
35,3 |
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 1.0m/min. casting speed and different values flow rate of cooling water in the crystallizer
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 2.0m/min. casting speed and different values flow rate of cooling water in the crystallizer
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 3.0m/min. casting speed and different values flow rate of cooling water in the crystallizer
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) obtained from Upcast line with 4.0m/min. casting speed and different values flow rate of cooling water in the crystallizer
Amount of turns until breaking in static torsion test of CuOFE wire rod (diameter 8.0mm)
Production technology |
Casting speed |
Amount of turns until breaking |
---|---|---|
[m/min.] |
[n] | |
Rautomead |
4,00 |
81,2 |
Upcast |
4,00 |
81,5 |
3,00 |
80,8 |
|
2,00 |
76,5 |
|
1,00 |
61,7 |
|
0,50 |
56,1 |
|
DCC-AGH |
0,20 |
53,1 |
0,15 |
52,3 |
|
0,06 |
49,7 |
|
0,03 |
47,8 |
|
0,006 |
46,1 |
Amount of turns until breaking in static torsion test of CuOFE wire rod (diameter 8.0mm) casting with different speed
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) with a chemical purity of 6N and 8N by Fujiwara
Mechanical properties of CuOFE wire rod (diameter 8.0mm) used in electrical application
Material |
CuOFE | |||
---|---|---|---|---|
Production technology |
- |
Upcast, Rautomead |
Ohno | |
Chemical composition Cu + Ag |
[%wt] |
99,99 |
99,99 |
99,999 |
Content by weight of elements |
[ppm] |
50 |
20 |
10 |
Oxygen |
[ppm] |
< 5 |
< 3 |
1 |
UTS |
[MPa] |
180 – 200 |
180 |
160 |
Elongation A250 |
[%] |
35 – 55 |
35 – 50 |
50 |
Ductility |
[mm] |
0,05 |
0,01 |
0,01 |
Brinell hardness vs casting speed of oxygen free copper. Material: CuOFE cast (diameter 8.0mm)
Yield stress as a function of true strain for Cu-OFE wires (diameter 0.5-8.0 mm) - after drawing process
Ultimate tensile strength as a function of true strain for Cu-OFE wires (diameter 0.5-8.0 mm) - after drawing process
UTS/YS ratio vs strain of Cu-OFE wires (diameter 0,5-8.0 mm) after drawing process
Elongation A250 vs strain of Cu-OFE wires (diameter 0,5-8.0 mm) after drawing process
Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) after drawing process -logarithmic system
Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) after drawing process - logarithmic scale
Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0m/min.) based on wire rod from continuous casting process after drawing process
Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0m/min.) based on wire rod from continuous casting process after drawing process
Elongation A250 vs strain of Cu-OFE wires (diameter 0.5-8.0m/min.) based on wire rod from continuous casting process after drawing process
Hardness of Vickers (HV) for OF copper vs temperature
Remarks: In the log-scale a breaking point often can be observed at the recrystallization temperature (0,45-0,55 Th)
Effect of homologous temperature on the Brinell hardness and tensile strength Rm. Oxygen free copper; log-scale of HB and Rm
Dependence of the Brinell hardness of OFE copper on the homologous temperature Th
Effect of temperature on the tensile elasticity modulus E of the oxygen free copper
Shear strength results of copper bonds (99.99% pure annealed copper wires, 381 μm in diameter)
Maximum shear force versus bonding time for 300 μm OFC wires and two different bonding profiles (high or low ultrasonic power) without annealing (a) and after annealing at 300 °C (b)
Effect of low temperatures on the mechanical properties of Cu-OFE copper
Metal and crystal structure |
Material condition |
Temperature [°C] |
Tensile strength/yield limit [MPa] |
Elongation [%] |
Reduction of area [%] |
---|---|---|---|---|---|
Cu 99,99; K12 |
Annealed |
20 |
221/60 |
48 |
78 |
-40 |
238/65 |
47 |
77 |
||
-80 |
270/71 |
47 |
74 |
||
-120 |
290/76 |
45 |
70 |
||
-180 |
358/81 |
58 |
77 |
||
Cu 99,99; K12 |
Cold-worked without annealing |
20 |
300/293 |
18 |
71 |
-40 |
355/316 |
23 |
69 |
||
-70 |
435/322 |
44 |
69 |
||
-100 |
- |
- |
- |
||
-180 |
413/350 |
43 |
- |
||
-253 |
460/- |
48 |
34 |
Remarks: As can be seen from the table, OFE copper (FCC metal) preserve ductility at low temperatures.
Mechanical properties vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 1 hour annealing process
Elongation A250 vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 1 hour annealing process
Elevated-temperature tensile properties of CuOFE rod, H80 temper
Low-temperature mechanical properties of CuOFE bar
Tensile stress characteristic of CuOFE wire rod (diameter 8.0mm) with chemical purity 6N and 8N after annealing process in different temperatures by Fujiwara
Stress–strain curves at 293 and 77 K for OFC wire (0,506 mm in diameter) prepared from the SPS cylinder and at 293 K for the corresponding conventional wire
Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) obtained from wire rod after annealing process
Stress strain characteristic of Cu-OFE wires (diameter 0.5-8.0 mm) obtained from wire rod after annealing process
Elongation vs strain of Cu-OFE wires (diameter 0.5-8.0 mm) obtained from wire rod after annealing process
Softening resistance of copper with chemical purity 3N, 6N and 8N by Fujiwara
Microhardness and spring elongation test results for wires with a diameter of 1.2 mm after the annealing process in a salt bath and cooled in water. Identification of specimen: 1 - 99.98% Cu, 0.0005% O (Cu-OFE); 2 - 99.99% Cu, 0.0005% O (arc melted copper); 3 - 99.95% Cu, 0,02% (Cu-ETP), 4 - 99.999% Cu, 0.0001% O (5N copper) by Berin
Softening resistance of Cu-OFE wires
Softening resistance of Cu-OFE wires
Softening resistance of Cu-OFE wires
Mechanical properties vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process. The UTS of CuOFE wire rod increases after heat treatment at high temperatures from 600 °C to 900 °C. It is different from other materials because of its different structural state.
UTS/YS ratio vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process
Elongation A250 vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process
Percentage reduction of area vs temperature of Cu-OFE wire rod (diameter 8.0mm) after 24 hours annealing process
Half-softening temperature of Cu-OFE wire
Diameter of wire | Strain | Half-softening temperature |
---|---|---|
[mm] | [-] | [°C] |
7,0 | 0,28 | 335 |
5,5 | 0,76 | 280 |
4,5 | 1,16 | 260 |
2,5 | 2,38 | 220 |
0,5 | 5,59 | 170 |
Excellent hydrogen embrittlement resistance
Type of corrosion |
Suitability |
Literature |
---|---|---|
Atmospheric |
Formation of the a greenish protective patina due to the formation of copper basic salts (such sulphates, chlorides in marine environment, nitrates and carbonates). CuOFE has a good resistance in in natural and industrial atmosphere (maritime air too). |
|
Marine environment |
Good |
|
Stress crack |
Good |
|
Hydrogen embrittlement |
Excellent |
|
Electrolytic |
Good |
|
Other |
Resistant to: industrial and drinking water, aqueous and alkaline solutions (not oxidizing), pure water vapour (steam), non-oxidizing acids (without oxygen in solution) and salts, neutral saline solutions. Material can be heat-treated in reducing atmosphere. Not resistant to: oxidising acids, solutions containing cyanides, ammonia or halogens, hydrous ammonia and halogenated gases, hydrogen sulfide, seawater. |
Stress rupture properties of CuOF1, CuOF and CuOFE (C10100, C10200)
Temper or condition | Test temperature | Stress(a) for rupture in | ||
---|---|---|---|---|
10h | 100h | 1000h | ||
°C | MPa | |||
OS025(b) | 150 | - | 161 | 147 |
200 | - | 130 | 106 | |
Cold drawn 40%(c) | 120 | - | 272 | 245 |
150 | - | 241 | 215 | |
H80(d) | 450 | 33 | 17 | - |
650 | 9.7 | 5.2 | - | |
(a) Parentheses indicate extrapolated values (b) Tensile strength 238 MPa at 21 °C (c) Tensile strength 352 MPa at 21 °C (d) Tensile strength 426 MPa at 21 °C |
Creep properties of CuOF1, CuOF and CuOFE (C10100, C10200)
Condition and grain size | Test temperature | Stress(a) for creep rate of | |||||
---|---|---|---|---|---|---|---|
10-6 %/h | 10-5 %/h | 10-4 %/h | 10-3 %/h | 10-2 %/h | 10-1 %/h | ||
°C | MPa | ||||||
OS025(b) | 43 | - | - | - | 170 | 185 | 200 |
120 | - | - | - | 125 | 150 | 165 | |
150 | 11 | 25 | 55 | 110 | 130 | 150 | |
205 | 3 | 10 | 33 | - | - | - | |
260 | 0.7 | 3 | 12 | - | - | - | |
370 | - | - | - | - | 21 | 40 | |
480 | - | - | - | - | 9.9 | 23 | |
Cold drawn 40%(c) | 43 | - | - | - | 310 | 330 | - |
120 | - | - | - | 240 | 270 | 295 | |
150 | - | - | - | 200 | 235 | 250 | |
370 | - | - | - | 11 | 26 | 39 | |
480 | - | - | - | - | 8.3 | 17 | |
650 | - | - | - | - | 3 | 6 | |
Cold drawn 84%(d) | 150 | - | 55 | 89.6 | - | - | - |
205 | 4.5 | 12 | 35 | - | - | - | |
(a) Parentheses indicate extrapolated values (b) Tensile strength 220 MPa at 21 °C (c) Tensile strength 352 MPa at 21 °C (d) Tensile strength 376 MPa at 21 °C | |||||||
Literature: |
Temper |
Fatigue strength at 108 cycles, MPa |
---|---|
Flat products, 1 mm thick | |
OS025 |
76 |
H02 |
90 |
H04 |
90 |
H08 |
95 |
Rod, 25 mm in diameter | |
H80 (35%) |
115 |
Literature: |
The fatigue strength gives an indication about the resistance to variations in applied tension. It is measured under symmetrical alternating load. The maximum bending load for 107 load cycles without crack is measured. Dependent on the temper class it is approximately 1/3 of the tensile strength Rm .
Table of fatigue limits of OFE copper at room temperature
Metal |
Type of material |
Corresponding mechanical properties in MPa and elongation [%] |
Fatigue limit [MPa] |
Basic number of cycles |
---|---|---|---|---|
Cu 99,997 |
Wire rod, cold-worked 20% |
Rm=357 |
Reversed Bending 120 |
108 |
El. 14% |
||||
Red of Area 88% |
Charpy impact strength at low temperature of oxygen free copper
Effect of low temperatures on the impact strength of Cu-OFE copper
Metal and crystal structure |
Material condition |
Temperature [°C] |
Tensile strength/yield limit [Mpa] |
Elongation [%] |
Reduction of area [%] |
Impact strength [Kgm/cm2] |
---|---|---|---|---|---|---|
Cu 99,99; K12 |
Annealed |
20 |
221/60 |
48 |
78 |
|
-40 |
238/65 |
47 |
77 |
|||
-80 |
270/71 |
47 |
74 |
|||
-120 |
290/76 |
45 |
70 |
|||
-180 |
358/81 |
58 |
77 |
|||
Cold-worked without annealing |
20 |
300/293 |
18 |
71 |
11 |
|
-40 |
355/316 |
23 |
69 |
12 |
||
-70 |
435/322 |
44 |
69 |
13 |
||
-100 |
- |
- |
- |
14 |
||
-180 |
413/350 |
43 |
- |
15 |
||
-253 |
460/- |
48 |
34 |
13 |
Metal and crystal structure |
Material condition |
Temperature [°C] |
Tensile strength/yield limit [Mpa] |
Elongation [%] |
Reduction of area [%] |
Impact strength [Kgm/cm2] |
---|---|---|---|---|---|---|
Cu 99,985; K12 |
Annealed |
20 |
221/60 |
48 |
78 |
|
-40 |
238/65 |
47 |
77 |
|
||
-80 |
270/71 |
47 |
74 |
|
||
-120 |
290/76 |
45 |
70 |
|
||
-180 |
358/81 |
58 |
77 |
|
||
Cold-worked without annealing |
20 |
300/293 |
18 |
71 |
11 |
|
-40 |
355/316 |
23 |
69 |
12 |
||
-70 |
435/322 |
44 |
69 |
13 |
||
-100 |
- |
- |
- |
14 |
||
-180 |
413/350 |
43 |
- |
15 |
||
-253 |
460/- |
48 |
34 |
13 |
Fabrication properties
|
Value | Comments | |
Soldering | Excellent | ||
Brazing | Excellent | ||
Hot dip tinning | Excellent | ||
Electrolytic tinning | Excellent | ||
Electrolytic silvering | Excellent | ||
Electrolytic nickel coating | Excellent | ||
Laser welding | Fair | ||
Oxyacetylene Welding | Fair | ||
Gas Shielded Arc Welding | Excellent | ||
Coated Metal Arc Welding | Not Recommended | ||
Resistance welding | Less suitable | ||
Spot Weld | Not Recommended | ||
Seam Weld | Not Recommended | ||
Butt Weld | Good | ||
Capacity for Being Hot Formed | Excellent | ||
Forgeability Rating | 65 | [%] | |
Machinability Rating | 20 | [%] Less suitable |
Cross-sectional area of Cu-OF weld seams in butt joint configuration: Cu-OF joints welded with filler wire with different coatings; lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.
Weld seam width at the top side of Cu-OF weld seams in butt joint configuration: Cu-OF joints welded with filler wire with different coatings; lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.
Electrical resistance of Cu-OF weld seams in butt joint configuration: Cu-OF joints welded with filler wire with different coatings; lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.
Stress-Strain-Diagrams of Cu-OF joints welded in butt joint configuration: Left hand side: Cu-OF joints welded without coating (Wire A), with nickel coating of 5 µm thickness (Wire B) and with nickel coating of 20 µm thickness (Wire C); right hand side: Cu-OF joints welded without coating (Wire A), with tin coating of 5 µm thickness (Wire D) and with tin coating of 20 µm thickness (Wire C); all: lateral angle of incidence 10o, laser power 3,800 W, gap-width 0 mm, welding velocity 2,5 m/min.
Stress-strain curves for OFC samples machined with various feeds (The machining of the test rods was done at three different feed levels: 0,15; 0,25 and 0,35 mm/rev in the middle part of the test rods marked in red)
Detail of the stress-strain curves in the elastic region
Yield strength for each test rod and average yield strength
Observed and average values of different deformation depths compared to different feeds
Technological properties
|
||||||||
Melting temperature [°C] | Casting temperature [°C] | Castability | Annealling temperature [°C] | Homogenization temperature [°C] | Quenching temperature [°C] | Ageing temperature [°C] | Stress relievieng temperature [°C] | Hot working temperature [°C] |
1083 | 1140-1200 | No data | 375-600 | No data | No data | No data | 150-650 Comments: Stress relievieng time: 1-3h | 750-875 |